Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
838197ea
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
838197ea
编写于
4月 29, 2020
作者:
D
dyning
提交者:
GitHub
4月 29, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #92 from WuHaobo/polish_googlenet
polish program for googlenet
上级
478d4ab5
10005abe
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
22 addition
and
10 deletion
+22
-10
tools/program.py
tools/program.py
+22
-10
未找到文件。
tools/program.py
浏览文件 @
838197ea
...
...
@@ -157,7 +157,11 @@ def create_loss(out,
return
loss
(
out
,
target
)
def
create_metric
(
out
,
feeds
,
topk
=
5
,
classes_num
=
1000
,
def
create_metric
(
out
,
feeds
,
architecture
,
topk
=
5
,
classes_num
=
1000
,
use_distillation
=
False
):
"""
Create measures of model accuracy, such as top1 and top5
...
...
@@ -171,16 +175,22 @@ def create_metric(out, feeds, topk=5, classes_num=1000,
Returns:
fetchs(dict): dict of measures
"""
# just need student label to get metrics
if
use_distillation
:
out
=
out
[
1
]
if
architecture
[
"name"
]
==
"GoogLeNet"
:
assert
len
(
out
)
==
3
,
"GoogLeNet should have 3 outputs"
softmax_out
=
out
[
0
]
else
:
# just need student label to get metrics
if
use_distillation
:
out
=
out
[
1
]
softmax_out
=
fluid
.
layers
.
softmax
(
out
,
use_cudnn
=
False
)
fetchs
=
OrderedDict
()
label
=
feeds
[
'label'
]
softmax_out
=
fluid
.
layers
.
softmax
(
out
,
use_cudnn
=
False
)
top1
=
fluid
.
layers
.
accuracy
(
softmax_out
,
label
=
label
,
k
=
1
)
# set top1 to fetchs
top1
=
fluid
.
layers
.
accuracy
(
softmax_out
,
label
=
feeds
[
'label'
],
k
=
1
)
fetchs
[
'top1'
]
=
(
top1
,
AverageMeter
(
'top1'
,
'.4f'
,
need_avg
=
True
))
# set topk to fetchs
k
=
min
(
topk
,
classes_num
)
topk
=
fluid
.
layers
.
accuracy
(
softmax_out
,
label
=
label
,
k
=
k
)
topk
=
fluid
.
layers
.
accuracy
(
softmax_out
,
label
=
feeds
[
'label'
]
,
k
=
k
)
topk_name
=
'top{}'
.
format
(
k
)
fetchs
[
topk_name
]
=
(
topk
,
AverageMeter
(
topk_name
,
'.4f'
,
need_avg
=
True
))
...
...
@@ -201,7 +211,8 @@ def create_fetchs(out,
Args:
out(variable): model output variable
feeds(dict): dict of model input variables(included label)
feeds(dict): dict of model input variables.
If use mix_up, it will not include label.
architecture(dict): architecture information,
name(such as ResNet50) is needed
topk(int): usually top5
...
...
@@ -217,7 +228,8 @@ def create_fetchs(out,
use_distillation
)
fetchs
[
'loss'
]
=
(
loss
,
AverageMeter
(
'loss'
,
'7.4f'
,
need_avg
=
True
))
if
not
use_mix
:
metric
=
create_metric
(
out
,
feeds
,
topk
,
classes_num
,
use_distillation
)
metric
=
create_metric
(
out
,
feeds
,
architecture
,
topk
,
classes_num
,
use_distillation
)
fetchs
.
update
(
metric
)
return
fetchs
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录