Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
823daeb3
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
823daeb3
编写于
4月 09, 2020
作者:
W
WuHaobo
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove test
上级
4dd59a1a
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
0 addition
and
426 deletion
+0
-426
ppcls/test/demo.jpeg
ppcls/test/demo.jpeg
+0
-0
ppcls/test/test_download.py
ppcls/test/test_download.py
+0
-39
ppcls/test/test_imaug.py
ppcls/test/test_imaug.py
+0
-271
ppcls/test/test_super_reader.py
ppcls/test/test_super_reader.py
+0
-116
未找到文件。
ppcls/test/demo.jpeg
已删除
100644 → 0
浏览文件 @
4dd59a1a
292.0 KB
ppcls/test/test_download.py
已删除
100644 → 0
浏览文件 @
4dd59a1a
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
dl
import
os
import
shutil
url
=
"https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar"
class
DownloadDecompressTestCase
(
unittest
.
TestCase
):
def
setUp
(
self
):
print
(
"Test Download and Decompress Function..."
)
def
test_decompress
(
self
):
if
os
.
path
.
exists
(
'./ResNet50_vd_pretrained'
):
shutil
.
rmtree
(
'./ResNet50_vd_pretrained'
)
if
os
.
path
.
exists
(
"./ResNet50_vd_pretrained.tar"
):
shutil
.
rmtree
(
"./ResNet50_vd_pretrained.tar"
)
dl
.
decompress
(
dl
.
download
(
url
,
"./"
))
self
.
assertTrue
(
os
.
path
.
exists
(
"./ResNet50_vd_pretrained"
))
shutil
.
rmtree
(
'./ResNet50_vd_pretrained'
)
if
__name__
==
"__main__"
:
unittest
.
main
()
ppcls/test/test_imaug.py
已删除
100644 → 0
浏览文件 @
4dd59a1a
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
ppcls.data.imaug
import
DecodeImage
from
ppcls.data.imaug
import
ResizeImage
from
ppcls.data.imaug
import
RandCropImage
from
ppcls.data.imaug
import
RandFlipImage
from
ppcls.data.imaug
import
NormalizeImage
from
ppcls.data.imaug
import
ToCHWImage
from
ppcls.data.imaug
import
ImageNetPolicy
from
ppcls.data.imaug
import
RandAugment
from
ppcls.data.imaug
import
Cutout
from
ppcls.data.imaug
import
HideAndSeek
from
ppcls.data.imaug
import
RandomErasing
from
ppcls.data.imaug
import
GridMask
from
ppcls.data.imaug
import
MixupOperator
from
ppcls.data.imaug
import
CutmixOperator
from
ppcls.data.imaug
import
FmixOperator
from
ppcls.data.imaug
import
transform
import
numpy
as
np
fname
=
'./test/demo.jpeg'
size
=
224
img_mean
=
[
0.485
,
0.456
,
0.406
]
img_std
=
[
0.229
,
0.224
,
0.225
]
img_scale
=
1.0
/
255.0
decode_op
=
DecodeImage
()
randcrop_op
=
RandCropImage
(
size
=
(
size
,
size
))
randflip_op
=
RandFlipImage
(
flip_code
=
1
)
normalize_op
=
NormalizeImage
(
scale
=
img_scale
,
mean
=
img_mean
,
std
=
img_std
,
order
=
''
)
tochw_op
=
ToCHWImage
()
data
=
open
(
fname
).
read
()
def
print_function_name
(
func
):
""" print function name"""
def
wrapper
(
*
args
,
**
kwargs
):
""" wrapper """
print
(
"========Test Fuction: [%s]:"
%
(
func
.
__name__
))
func
(
*
args
,
**
kwargs
)
print
(
"========Test Fuction: [%s] done!
\n
"
%
(
func
.
__name__
))
return
wrapper
@
print_function_name
def
test_decode
():
""" test decode operator """
img
=
decode_op
(
data
)
print
(
'img shape is %s'
%
(
str
(
img
.
shape
)))
@
print_function_name
def
test_randcrop
():
""" test randcrop operator """
img
=
decode_op
(
data
)
img
=
randcrop_op
(
img
)
assert
img
.
shape
==
(
size
,
size
,
3
),
\
'image shape[%s] should be equal to [%s]'
%
(
img
.
shape
,
(
size
,
size
,
3
))
@
print_function_name
def
test_randflip
():
""" test randflip operator """
import
cv2
img
=
transform
(
data
,
[
decode_op
,
randcrop_op
])
for
i
in
xrange
(
10
):
flip_img
=
randflip_op
(
img
)
if
np
.
array_equal
(
cv2
.
flip
(
img
,
1
),
flip_img
):
break
assert
np
.
array_equal
(
cv2
.
flip
(
img
,
1
),
flip_img
),
'you should check randcrop operator'
@
print_function_name
def
test_normalize
():
""" test normalize operator """
img
=
transform
(
data
,
[
decode_op
,
randcrop_op
])
norm_img
=
normalize_op
(
img
)
assert
norm_img
.
dtype
==
np
.
float32
,
'img.dtype should be float32 after normalizing'
assert
norm_img
.
shape
==
(
size
,
size
,
3
),
\
'image shape[%s] should be equal to [%s]'
%
(
norm_img
.
shape
,
(
size
,
size
,
3
))
print
(
'max value of the img after normalizing is : %f'
%
(
np
.
max
(
norm_img
.
flatten
())))
print
(
'min value of the img after normalizing is : %f'
%
(
np
.
min
(
norm_img
.
flatten
())))
@
print_function_name
def
test_tochw
():
""" test tochw operator """
img
=
transform
(
data
,
[
decode_op
,
randcrop_op
,
randflip_op
,
normalize_op
])
tochw_img
=
tochw_op
(
img
)
assert
tochw_img
.
dtype
==
np
.
float32
,
'img.dtype should be float32 after tochw'
assert
tochw_img
.
shape
==
(
3
,
size
,
size
),
\
'image shape[%s] should be equal to [%s]'
%
(
tochw_img
.
shape
,
(
3
,
size
,
size
))
@
print_function_name
def
test_autoaugment
():
""" test autoaugment operator """
from
PIL
import
Image
autoaugment_op
=
ImageNetPolicy
()
img
=
transform
(
data
,
[
decode_op
,
randcrop_op
])
aa_img
=
autoaugment_op
(
img
)
assert
aa_img
.
dtype
==
np
.
uint8
,
'img.dtype should be uint8 after autoaugment'
assert
aa_img
.
shape
==
(
size
,
size
,
3
),
\
'image shape[%s] should be equal to [%s]'
%
(
aa_img
.
shape
,
(
size
,
size
,
3
))
@
print_function_name
def
test_randaugment
():
""" test randaugment operator """
from
PIL
import
Image
randaugment_op
=
RandAugment
(
3
,
1
)
img
=
transform
(
data
,
[
decode_op
,
randcrop_op
])
ra_img
=
randaugment_op
(
img
)
assert
ra_img
.
dtype
==
np
.
uint8
,
'img.dtype should be uint8 after randaugment'
assert
ra_img
.
shape
==
(
size
,
size
,
3
),
\
'image shape[%s] should be equal to [%s]'
%
(
ra_img
.
shape
,
(
size
,
size
,
3
))
@
print_function_name
def
test_cutout
():
""" test cutout operator """
cutout_op
=
Cutout
()
img
=
transform
(
data
,
[
decode_op
,
randcrop_op
])
cutout_img
=
cutout_op
(
img
)
assert
cutout_img
.
dtype
==
np
.
uint8
,
'img.dtype should be uint8 after cutout'
assert
cutout_img
.
shape
==
(
size
,
size
,
3
),
\
'image shape[%s] should be equal to [%s]'
%
(
cutout_img
.
shape
,
(
size
,
size
,
3
))
@
print_function_name
def
test_hideandseek
():
""" test hide and seek operator """
img
=
transform
(
data
,
[
decode_op
,
randcrop_op
,
randflip_op
,
normalize_op
,
tochw_op
])
hide_and_seek_op
=
HideAndSeek
()
hs_img
=
hide_and_seek_op
(
img
)
assert
hs_img
.
dtype
==
np
.
float32
,
'img.dtype should be float32 after hide and seek'
assert
hs_img
.
shape
==
(
3
,
size
,
size
),
\
'image shape[%s] should be equal to [%s]'
%
(
hs_img
.
shape
,
(
3
,
size
,
size
))
@
print_function_name
def
test_randerasing
():
""" test randerasing operator """
img
=
transform
(
data
,
[
decode_op
,
randcrop_op
,
randflip_op
,
normalize_op
,
tochw_op
])
randomerasing_op
=
RandomErasing
()
re_img
=
randomerasing_op
(
img
)
assert
re_img
.
dtype
==
np
.
float32
,
'img.dtype should be float32 after randomerasing'
assert
re_img
.
shape
==
(
3
,
size
,
size
),
\
'image shape[%s] should be equal to [%s]'
%
(
re_img
.
shape
,
(
3
,
size
,
size
))
@
print_function_name
def
test_gridmask
():
""" test gridmask operator """
img
=
transform
(
data
,
[
decode_op
,
randcrop_op
,
randflip_op
,
normalize_op
,
tochw_op
])
gridmask_op
=
GridMask
(
d1
=
96
,
d2
=
224
,
rotate
=
360
,
ratio
=
0.6
,
mode
=
1
,
prob
=
0.8
)
gm_img
=
gridmask_op
(
img
)
assert
gm_img
.
dtype
==
np
.
float32
,
'img.dtype should be float32 after gridmask'
assert
gm_img
.
shape
==
(
3
,
size
,
size
),
\
'image shape[%s] should be equal to [%s]'
%
(
gr_img
.
shape
,
(
3
,
size
,
size
))
def
generate_batch
(
batch_size
=
32
):
""" generate_batch """
import
random
ops
=
[
decode_op
,
randcrop_op
,
randflip_op
,
normalize_op
,
tochw_op
]
batch
=
[(
transform
(
data
,
ops
),
random
.
randint
(
0
,
1000
))
for
i
in
xrange
(
batch_size
)]
return
batch
def
test_batch_operator
(
operator
,
batch_size
):
""" test batch operator """
batch
=
generate_batch
(
batch_size
)
assert
len
(
batch
)
==
batch_size
,
\
'num of samples not equal to batch_size: %d != %d'
%
(
len
(
batch
),
batch_size
)
assert
len
(
batch
[
0
])
==
2
,
\
'length of sample not equal to 2: %d != 2'
%
(
len
(
batch
[
0
]))
import
time
tic
=
time
.
time
()
new_batch
=
operator
(
batch
)
cost
=
time
.
time
()
-
tic
print
(
"operator cost: %.4fms"
%
(
cost
*
1000
))
assert
len
(
batch
)
==
len
(
new_batch
),
\
'num of samples not equal: %d != %d'
%
(
len
(
batch
),
len
(
new_batch
))
assert
len
(
new_batch
[
0
])
==
4
,
\
'length of sample not equal to 4: %d != 4'
%
(
len
(
new_batch
[
0
]))
@
print_function_name
def
test_mixup
():
""" test mixup operator """
batch_size
=
32
mixup_op
=
MixupOperator
(
alpha
=
0.2
)
test_batch_operator
(
mixup_op
,
batch_size
)
@
print_function_name
def
test_cutmix
():
""" test cutmix operator """
batch_size
=
32
cutmix_op
=
CutmixOperator
(
alpha
=
0.2
)
test_batch_operator
(
cutmix_op
,
batch_size
)
@
print_function_name
def
test_fmix
():
""" test fmix operator """
batch_size
=
32
fmix_op
=
FmixOperator
()
test_batch_operator
(
fmix_op
,
batch_size
)
if
__name__
==
'__main__'
:
test_decode
()
test_randcrop
()
test_randflip
()
test_normalize
()
test_tochw
()
test_autoaugment
()
test_randaugment
()
test_cutout
()
test_hideandseek
()
test_randerasing
()
test_gridmask
()
test_mixup
()
test_cutmix
()
test_fmix
()
ppcls/test/test_super_reader.py
已删除
100644 → 0
浏览文件 @
4dd59a1a
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
ppcls.data.imaug
import
DecodeImage
from
ppcls.data.imaug
import
RandCropImage
from
ppcls.data.imaug
import
RandFlipImage
from
ppcls.data.imaug
import
NormalizeImage
from
ppcls.data.imaug
import
ToCHWImage
from
ppcls.data.imaug
import
ImageNetPolicy
from
ppcls.data.imaug
import
RandAugment
from
ppcls.data.imaug
import
Cutout
from
ppcls.data.imaug
import
HideAndSeek
from
ppcls.data.imaug
import
RandomErasing
from
ppcls.data.imaug
import
GridMask
from
ppcls.data.imaug
import
MixupOperator
from
ppcls.data.imaug
import
CutmixOperator
from
ppcls.data.imaug
import
FmixOperator
from
ppcls.data.imaug
import
transform
import
numpy
as
np
fname
=
'./test/demo.jpeg'
size
=
224
img_mean
=
[
0.485
,
0.456
,
0.406
]
img_std
=
[
0.229
,
0.224
,
0.225
]
img_scale
=
1.0
/
255.0
# normal_ops_1
decode_op
=
DecodeImage
()
randcrop_op
=
RandCropImage
(
size
=
(
size
,
size
))
# trans_ops
autoaugment_op
=
ImageNetPolicy
()
randaugment_op
=
RandAugment
(
3
,
1
)
cutout_op
=
Cutout
()
# normal_ops_2
randflip_op
=
RandFlipImage
(
flip_code
=
1
)
normalize_op
=
NormalizeImage
(
scale
=
img_scale
,
mean
=
img_mean
,
std
=
img_std
,
order
=
''
)
tochw_op
=
ToCHWImage
()
# mask_ops
hide_and_seek_op
=
HideAndSeek
()
randomerasing_op
=
RandomErasing
()
gridmask_op
=
GridMask
(
d1
=
96
,
d2
=
224
,
rotate
=
360
,
ratio
=
0.6
,
mode
=
1
,
prob
=
0.8
)
# batch_ops
mixup_op
=
MixupOperator
(
alpha
=
0.2
)
cutmix_op
=
CutmixOperator
(
alpha
=
0.2
)
fmix_op
=
FmixOperator
()
def
fakereader
():
""" fake reader """
import
random
data
=
open
(
fname
).
read
()
def
wrapper
():
while
True
:
yield
(
data
,
random
.
randint
(
0
,
1000
))
return
wrapper
def
superreader
(
batch_size
=
32
):
""" super reader """
normal_ops_1
=
[
decode_op
,
randcrop_op
]
normal_ops_2
=
[
randflip_op
,
normalize_op
,
tochw_op
]
trans_ops
=
[
autoaugment_op
,
randaugment_op
,
cutout_op
]
trans_ops_p
=
[
0.2
,
0.3
,
0.5
]
mask_ops
=
[
hide_and_seek_op
,
randomerasing_op
,
gridmask_op
]
mask_ops_p
=
[
0.1
,
0.6
,
0.3
]
batch_ops
=
[
mixup_op
,
cutmix_op
,
fmix_op
]
batch_ops_p
=
[
0.3
,
0.3
,
0.4
]
reader
=
fakereader
()
def
wrapper
():
batch
=
[]
for
idx
,
sample
in
enumerate
(
reader
()):
img
,
label
=
sample
ops
=
normal_ops_1
+
[
np
.
random
.
choice
(
trans_ops
,
p
=
trans_ops_p
)]
+
\
normal_ops_2
+
[
np
.
random
.
choice
(
mask_ops
,
p
=
mask_ops_p
)]
img
=
transform
(
img
,
ops
)
batch
.
append
((
img
,
label
))
if
(
idx
+
1
)
%
batch_size
==
0
:
batch
=
transform
(
batch
,
[
np
.
random
.
choice
(
batch_ops
,
p
=
batch_ops_p
)])
yield
batch
batch
=
[]
return
wrapper
if
__name__
==
'__main__'
:
reader
=
superreader
(
32
)
for
batch
in
reader
():
print
(
len
(
batch
),
len
(
batch
[
0
]),
batch
[
0
][
0
].
shape
,
batch
[
0
][
1
:])
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录