提交 811b483e 编写于 作者: G gaotingquan 提交者: cuicheng01

fix: set dtype in paddle.to_tensor()

上级 23f5af9f
......@@ -49,7 +49,7 @@ def drop_path(x, drop_prob=0., training=False):
"""
if drop_prob == 0. or not training:
return x
keep_prob = paddle.to_tensor(1 - drop_prob)
keep_prob = paddle.to_tensor(1 - drop_prob, dtype=x.dtype)
shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
random_tensor = paddle.floor(random_tensor) # binarize
......@@ -279,4 +279,4 @@ def ConvNeXt_large_384(pretrained=False, use_ssld=False, **kwargs):
depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["ConvNeXt_large_384"], use_ssld=use_ssld)
return model
\ No newline at end of file
return model
......@@ -102,7 +102,7 @@ def drop_path(x, drop_prob=0., training=False):
"""
if drop_prob == 0. or not training:
return x
keep_prob = paddle.to_tensor(1 - drop_prob)
keep_prob = paddle.to_tensor(1 - drop_prob, dtype=x.dtype)
shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
random_tensor = paddle.floor(random_tensor) # binarize
......
......@@ -365,7 +365,7 @@ def drop_path(x, training=False, survival_prob=1.0):
if not training:
return x
shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
keep_prob = paddle.to_tensor(survival_prob)
keep_prob = paddle.to_tensor(survival_prob, dtype=x.dtype)
random_tensor = keep_prob + paddle.rand(shape).astype(x.dtype)
random_tensor = paddle.floor(random_tensor) # binarize
output = x.divide(keep_prob) * random_tensor
......
......@@ -26,19 +26,32 @@ from paddle.nn.initializer import TruncatedNormal, Constant, Normal
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {
"CLIP_vit_base_patch32_224": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/CLIP_vit_base_patch32_224.pdparams",
"CLIP_vit_base_patch16_224": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/CLIP_vit_base_patch16_224.pdparams",
"CLIP_vit_large_patch14_336": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/CLIP_vit_large_patch14_336.pdparams",
"CLIP_vit_large_patch14_224": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/CLIP_vit_large_patch14_224.pdparams",
"BEiTv2_vit_base_patch16_224": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/BEiTv2_vit_base_patch16_224.pdparams",
"BEiTv2_vit_large_patch16_224": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/BEiTv2_vit_large_patch16_224.pdparams",
"CAE_vit_base_patch16_224": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/CAE_vit_base_patch16_224.pdparams",
'EVA_vit_huge_patch14':"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/EVA_vit_huge_patch14.pdparams",
"MOCOV3_vit_small": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/MOCOV3_vit_small.pdparams",
"MOCOV3_vit_base": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/MOCOV3_vit_base.pdparams",
"MAE_vit_huge_patch14": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/MAE_vit_huge_patch14.pdparams",
"MAE_vit_large_patch16": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/MAE_vit_large_patch16.pdparams",
"MAE_vit_base_patch16": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/MAE_vit_base_patch16.pdparams",
"CLIP_vit_base_patch32_224":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/CLIP_vit_base_patch32_224.pdparams",
"CLIP_vit_base_patch16_224":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/CLIP_vit_base_patch16_224.pdparams",
"CLIP_vit_large_patch14_336":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/CLIP_vit_large_patch14_336.pdparams",
"CLIP_vit_large_patch14_224":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/CLIP_vit_large_patch14_224.pdparams",
"BEiTv2_vit_base_patch16_224":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/BEiTv2_vit_base_patch16_224.pdparams",
"BEiTv2_vit_large_patch16_224":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/BEiTv2_vit_large_patch16_224.pdparams",
"CAE_vit_base_patch16_224":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/CAE_vit_base_patch16_224.pdparams",
'EVA_vit_huge_patch14':
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/EVA_vit_huge_patch14.pdparams",
"MOCOV3_vit_small":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/MOCOV3_vit_small.pdparams",
"MOCOV3_vit_base":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/MOCOV3_vit_base.pdparams",
"MAE_vit_huge_patch14":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/MAE_vit_huge_patch14.pdparams",
"MAE_vit_large_patch16":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/MAE_vit_large_patch16.pdparams",
"MAE_vit_base_patch16":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/MAE_vit_base_patch16.pdparams",
}
__all__ = list(MODEL_URLS.keys())
......@@ -48,8 +61,8 @@ _model_diff = None
_CLIP_diff = {
'add_layer_norm_before_encoder': [
'base_vit_patch32_224', 'base_vit_patch16_224', 'large_vit_patch14_336',
'large_vit_patch14_224'
'base_vit_patch32_224', 'base_vit_patch16_224',
'large_vit_patch14_336', 'large_vit_patch14_224'
],
'add_relative_position_bias_in_msa': [],
'add_shared_rel_pos_bias': [],
......@@ -57,8 +70,8 @@ _CLIP_diff = {
'remove_cls_token': [],
'remove_abs_pos_emb': [],
'replace_mlp_GELU': [
'base_vit_patch32_224', 'base_vit_patch16_224', 'large_vit_patch14_336',
'large_vit_patch14_224'
'base_vit_patch32_224', 'base_vit_patch16_224',
'large_vit_patch14_336', 'large_vit_patch14_224'
],
'head': {
'fc_norm': [],
......@@ -102,7 +115,8 @@ _BEiTv2_diff = {
'add_relative_position_bias_in_msa':
['base_vit_patch16_224', 'large_vit_patch16_224'],
'add_shared_rel_pos_bias': [],
'add_mul_gamma_to_msa_mlp': ['base_vit_patch16_224', 'large_vit_patch16_224'],
'add_mul_gamma_to_msa_mlp':
['base_vit_patch16_224', 'large_vit_patch16_224'],
'remove_cls_token': [],
'remove_abs_pos_emb': ['base_vit_patch16_224', 'large_vit_patch16_224'],
'replace_mlp_GELU': [],
......@@ -175,7 +189,7 @@ def drop_path(x, drop_prob=0., training=False):
"""
if drop_prob == 0. or not training:
return x
keep_prob = paddle.to_tensor(1 - drop_prob)
keep_prob = paddle.to_tensor(1 - drop_prob, dtype=x.dtype)
shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
random_tensor = keep_prob + paddle.rand(shape).astype(x.dtype)
random_tensor = paddle.floor(random_tensor) # binarize
......@@ -886,4 +900,4 @@ def CAE_vit_base_patch16_224(pretrained=False, use_ssld=False, **kwargs):
**kwargs, )
_load_pretrained(
pretrained, model, MODEL_URLS[model_name], use_ssld=use_ssld)
return model
\ No newline at end of file
return model
......@@ -54,7 +54,7 @@ def drop_path(x, drop_prob=0., training=False):
"""
if drop_prob == 0. or not training:
return x
keep_prob = paddle.to_tensor(1 - drop_prob)
keep_prob = paddle.to_tensor(1 - drop_prob, dtype=x.dtype)
shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
random_tensor = paddle.add(keep_prob, paddle.rand(shape, dtype=x.dtype))
random_tensor = paddle.floor(random_tensor) # binarize
......
......@@ -48,7 +48,7 @@ def drop_path(x, drop_prob=0., training=False):
"""
if drop_prob == 0. or not training:
return x
keep_prob = paddle.to_tensor(1 - drop_prob)
keep_prob = paddle.to_tensor(1 - drop_prob, dtype=x.dtype)
shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
random_tensor = paddle.floor(random_tensor) # binarize
......
......@@ -60,7 +60,7 @@ def drop_path(x, drop_prob=0., training=False):
"""
if drop_prob == 0. or not training:
return x
keep_prob = paddle.to_tensor(1 - drop_prob)
keep_prob = paddle.to_tensor(1 - drop_prob, dtype=x.dtype)
shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
random_tensor = keep_prob + paddle.rand(shape).astype(x.dtype)
random_tensor = paddle.floor(random_tensor) # binarize
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册