提交 7cf64ce4 编写于 作者: S stephon

fix some bugs; same as paddle inference result

上级 55495b69
...@@ -81,16 +81,20 @@ class DetOp(Op): ...@@ -81,16 +81,20 @@ class DetOp(Op):
boxes = self.img_postprocess(fetch_dict, visualize=False) boxes = self.img_postprocess(fetch_dict, visualize=False)
boxes.sort(key = lambda x: x["score"], reverse = True) boxes.sort(key = lambda x: x["score"], reverse = True)
boxes = filter(lambda x: x["score"] >= self.threshold, boxes[:self.max_det_results]) boxes = filter(lambda x: x["score"] >= self.threshold, boxes[:self.max_det_results])
result = json.dumps(list(boxes)) boxes = list(boxes)
res_dict = {"bbox_result": result, "image": self.raw_img} for i in range(len(boxes)):
boxes[i]["bbox"][2] += boxes[i]["bbox"][0] - 1
boxes[i]["bbox"][3] += boxes[i]["bbox"][1] - 1
result = json.dumps(boxes)
res_dict = {"bbox_result": result, "image": self.raw_img}
return res_dict, None, "" return res_dict, None, ""
class RecOp(Op): class RecOp(Op):
def init_op(self): def init_op(self):
self.seq = Sequential([ self.seq = Sequential([
Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)), BGR2RGB(), Resize((224, 224)),
Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225],
True) False), Transpose((2, 0, 1))
]) ])
index_dir = "../../recognition_demo_data_v1.1/gallery_product/index" index_dir = "../../recognition_demo_data_v1.1/gallery_product/index"
...@@ -107,6 +111,8 @@ class RecOp(Op): ...@@ -107,6 +111,8 @@ class RecOp(Op):
self.rec_nms_thresold = 0.05 self.rec_nms_thresold = 0.05
self.rec_score_thres = 0.5 self.rec_score_thres = 0.5
self.feature_normalize = True
self.return_k = 1
def preprocess(self, input_dicts, data_id, log_id): def preprocess(self, input_dicts, data_id, log_id):
(_, input_dict), = input_dicts.items() (_, input_dict), = input_dicts.items()
...@@ -125,7 +131,7 @@ class RecOp(Op): ...@@ -125,7 +131,7 @@ class RecOp(Op):
imgs = [] imgs = []
for box in boxes: for box in boxes:
box = [int(x) for x in box["bbox"]] box = [int(x) for x in box["bbox"]]
im = origin_img[box[1]: box[1] + box[3], box[0]: box[0] + box[2]].copy() im = origin_img[box[1]: box[3], box[0]: box[2]].copy()
img = self.seq(im) img = self.seq(im)
imgs.append(img[np.newaxis, :].copy()) imgs.append(img[np.newaxis, :].copy())
...@@ -159,14 +165,20 @@ class RecOp(Op): ...@@ -159,14 +165,20 @@ class RecOp(Op):
return filtered_results return filtered_results
def postprocess(self, input_dicts, fetch_dict, log_id): def postprocess(self, input_dicts, fetch_dict, log_id):
score_list = fetch_dict["features"] batch_features = fetch_dict["features"]
scores, docs = self.searcher.search(score_list, 1)
if self.feature_normalize:
feas_norm = np.sqrt(
np.sum(np.square(batch_features), axis=1, keepdims=True))
batch_features = np.divide(batch_features, feas_norm)
scores, docs = self.searcher.search(batch_features, self.return_k)
results = [] results = []
for i in range(scores.shape[0]): for i in range(scores.shape[0]):
pred = {} pred = {}
if scores[i][0] >= self.rec_score_thres: if scores[i][0] >= self.rec_score_thres:
pred["bbox"] = self.det_boxes[i]["bbox"] pred["bbox"] = [int(x) for x in self.det_boxes[i]["bbox"]]
pred["rec_docs"] = self.id_map[docs[i][0]].split()[1] pred["rec_docs"] = self.id_map[docs[i][0]].split()[1]
pred["rec_scores"] = scores[i][0] pred["rec_scores"] = scores[i][0]
results.append(pred) results.append(pred)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册