提交 798fe1aa 编写于 作者: W WuHaobo

add dynamic train

上级 166c3a88
......@@ -20,8 +20,6 @@ import argparse
import os
import paddle.fluid as fluid
from paddle.fluid.incubate.fleet.base import role_maker
from paddle.fluid.incubate.fleet.collective import fleet
from ppcls.data import Reader
from ppcls.utils.config import get_config
......@@ -49,73 +47,63 @@ def parse_args():
def main(args):
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
config = get_config(args.config, overrides=args.override, show=True)
# assign the place
gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0))
gpu_id = fluid.dygraph.parallel.Env().dev_id
place = fluid.CUDAPlace(gpu_id)
# startup_prog is used to do some parameter init work,
# and train prog is used to hold the network
startup_prog = fluid.Program()
train_prog = fluid.Program()
best_top1_acc = 0.0 # best top1 acc record
train_dataloader, train_fetchs = program.build(
config, train_prog, startup_prog, is_train=True)
if config.validate:
valid_prog = fluid.Program()
valid_dataloader, valid_fetchs = program.build(
config, valid_prog, startup_prog, is_train=False)
# clone to prune some content which is irrelevant in valid_prog
valid_prog = valid_prog.clone(for_test=True)
# create the "Executor" with the statement of which place
exe = fluid.Executor(place=place)
# only run startup_prog once to init
exe.run(startup_prog)
# load model from checkpoint or pretrained model
init_model(config, train_prog, exe)
train_reader = Reader(config, 'train')()
train_dataloader.set_sample_list_generator(train_reader, place)
if config.validate:
valid_reader = Reader(config, 'valid')()
valid_dataloader.set_sample_list_generator(valid_reader, place)
compiled_valid_prog = program.compile(config, valid_prog)
compiled_train_prog = fleet.main_program
for epoch_id in range(config.epochs):
# 1. train with train dataset
program.run(train_dataloader, exe, compiled_train_prog, train_fetchs,
epoch_id, 'train')
if int(os.getenv("PADDLE_TRAINER_ID", 0)) == 0:
# 2. validate with validate dataset
if config.validate and epoch_id % config.valid_interval == 0:
top1_acc = program.run(valid_dataloader, exe,
compiled_valid_prog, valid_fetchs,
epoch_id, 'valid')
if top1_acc > best_top1_acc:
best_top1_acc = top1_acc
message = "The best top1 acc {:.5f}, in epoch: {:d}".format(best_top1_acc, epoch_id)
logger.info("{:s}".format(logger.coloring(message, "RED")))
if epoch_id % config.save_interval==0:
model_path = os.path.join(config.model_save_dir,
with fluid.dygraph.guard(place):
strategy = fluid.dygraph.parallel.prepare_context()
net = program.create_model(config.ARCHITECTURE, config.classes_num)
net = fluid.dygraph.parallel.DataParallel(net, strategy)
optimizer = program.create_optimizer(
config, parameter_list=net.parameters())
# load model from checkpoint or pretrained model
init_model(config, net, optimizer)
train_dataloader = program.create_dataloader()
train_reader = Reader(config, 'train')()
train_dataloader.set_sample_list_generator(train_reader, place)
if config.validate:
valid_dataloader = program.create_dataloader()
valid_reader = Reader(config, 'valid')()
valid_dataloader.set_sample_list_generator(valid_reader, place)
best_top1_acc = 0.0 # best top1 acc record
for epoch_id in range(config.epochs):
net.train()
# 1. train with train dataset
program.run(train_dataloader, config, net, optimizer, epoch_id,
'train')
if fluid.dygraph.parallel.Env().local_rank == 0:
# 2. validate with validate dataset
if config.validate and epoch_id % config.valid_interval == 0:
net.eval()
top1_acc = program.run(valid_dataloader, config, net, None,
epoch_id, 'valid')
if top1_acc > best_top1_acc:
best_top1_acc = top1_acc
message = "The best top1 acc {:.5f}, in epoch: {:d}".format(
best_top1_acc, epoch_id)
logger.info("{:s}".format(
logger.coloring(message, "RED")))
if epoch_id % config.save_interval == 0:
model_path = os.path.join(
config.model_save_dir,
config.ARCHITECTURE["name"])
save_model(net, optimizer, model_path,
"best_model_in_epoch_" + str(epoch_id))
# 3. save the persistable model
if epoch_id % config.save_interval == 0:
model_path = os.path.join(config.model_save_dir,
config.ARCHITECTURE["name"])
save_model(train_prog, model_path, "best_model_in_epoch_"+str(epoch_id))
# 3. save the persistable model
if epoch_id % config.save_interval == 0:
model_path = os.path.join(config.model_save_dir,
config.ARCHITECTURE["name"])
save_model(train_prog, model_path, epoch_id)
save_model(net, optimizer, model_path, epoch_id)
if __name__ == '__main__':
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册