Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
789fcb2c
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
1 年多 前同步成功
通知
116
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
789fcb2c
编写于
4月 25, 2021
作者:
L
lyuwenyu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add explanation for models
上级
a0b0a4d0
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
438 addition
and
93 deletion
+438
-93
hubconf.py
hubconf.py
+438
-93
未找到文件。
hubconf.py
浏览文件 @
789fcb2c
...
...
@@ -69,8 +69,15 @@ def _load_pretrained_parameters(model, name):
def
AlexNet
(
pretrained
=
False
,
**
kwargs
):
'''AlexNet
'''
"""
AlexNet
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `AlexNet` model depends on args.
"""
model
=
_alexnet
.
AlexNet
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'AlexNet'
)
...
...
@@ -78,10 +85,17 @@ def AlexNet(pretrained=False, **kwargs):
return
model
def
VGG11
(
pretrained
=
False
,
**
kwargs
):
'''VGG11
'''
"""
VGG11
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False`
Returns:
model: nn.Layer. Specific `VGG11` model depends on args.
"""
model
=
_vgg
.
VGG11
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'VGG11'
)
...
...
@@ -90,8 +104,16 @@ def VGG11(pretrained=False, **kwargs):
def
VGG13
(
pretrained
=
False
,
**
kwargs
):
'''VGG13
'''
"""
VGG13
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False`
Returns:
model: nn.Layer. Specific `VGG13` model depends on args.
"""
model
=
_vgg
.
VGG13
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'VGG13'
)
...
...
@@ -100,8 +122,16 @@ def VGG13(pretrained=False, **kwargs):
def
VGG16
(
pretrained
=
False
,
**
kwargs
):
'''VGG16
'''
"""
VGG16
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False`
Returns:
model: nn.Layer. Specific `VGG16` model depends on args.
"""
model
=
_vgg
.
VGG16
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'VGG16'
)
...
...
@@ -110,8 +140,16 @@ def VGG16(pretrained=False, **kwargs):
def
VGG19
(
pretrained
=
False
,
**
kwargs
):
'''VGG19
'''
"""
VGG19
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False`
Returns:
model: nn.Layer. Specific `VGG19` model depends on args.
"""
model
=
_vgg
.
VGG19
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'VGG19'
)
...
...
@@ -122,8 +160,17 @@ def VGG19(pretrained=False, **kwargs):
def
ResNet18
(
pretrained
=
False
,
**
kwargs
):
'''ResNet18
'''
"""
ResNet18
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
input_image_channel: int=3. The number of input image channels
data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC')
Returns:
model: nn.Layer. Specific `ResNet18` model depends on args.
"""
model
=
_resnet
.
ResNet18
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNet18'
)
...
...
@@ -132,8 +179,17 @@ def ResNet18(pretrained=False, **kwargs):
def
ResNet34
(
pretrained
=
False
,
**
kwargs
):
'''ResNet34
'''
"""
ResNet34
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
input_image_channel: int=3. The number of input image channels
data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC')
Returns:
model: nn.Layer. Specific `ResNet34` model depends on args.
"""
model
=
_resnet
.
ResNet34
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNet34'
)
...
...
@@ -142,8 +198,17 @@ def ResNet34(pretrained=False, **kwargs):
def
ResNet50
(
pretrained
=
False
,
**
kwargs
):
'''ResNet50
'''
"""
ResNet50
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
input_image_channel: int=3. The number of input image channels
data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC')
Returns:
model: nn.Layer. Specific `ResNet50` model depends on args.
"""
model
=
_resnet
.
ResNet50
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNet50'
)
...
...
@@ -152,8 +217,17 @@ def ResNet50(pretrained=False, **kwargs):
def
ResNet101
(
pretrained
=
False
,
**
kwargs
):
'''ResNet101
'''
"""
ResNet101
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
input_image_channel: int=3. The number of input image channels
data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC')
Returns:
model: nn.Layer. Specific `ResNet101` model depends on args.
"""
model
=
_resnet
.
ResNet101
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNet101'
)
...
...
@@ -162,8 +236,17 @@ def ResNet101(pretrained=False, **kwargs):
def
ResNet152
(
pretrained
=
False
,
**
kwargs
):
'''ResNet152
'''
"""
ResNet152
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
input_image_channel: int=3. The number of input image channels
data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC')
Returns:
model: nn.Layer. Specific `ResNet152` model depends on args.
"""
model
=
_resnet
.
ResNet152
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNet152'
)
...
...
@@ -173,8 +256,15 @@ def ResNet152(pretrained=False, **kwargs):
def
SqueezeNet1_0
(
pretrained
=
False
,
**
kwargs
):
'''SqueezeNet1_0
'''
"""
SqueezeNet1_0
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `SqueezeNet1_0` model depends on args.
"""
model
=
_squeezenet
.
SqueezeNet1_0
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'SqueezeNet1_0'
)
...
...
@@ -183,8 +273,15 @@ def SqueezeNet1_0(pretrained=False, **kwargs):
def
SqueezeNet1_1
(
pretrained
=
False
,
**
kwargs
):
'''SqueezeNet1_1
'''
"""
SqueezeNet1_1
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `SqueezeNet1_1` model depends on args.
"""
model
=
_squeezenet
.
SqueezeNet1_1
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'SqueezeNet1_1'
)
...
...
@@ -195,8 +292,17 @@ def SqueezeNet1_1(pretrained=False, **kwargs):
def
DenseNet121
(
pretrained
=
False
,
**
kwargs
):
'''DenseNet121
'''
"""
DenseNet121
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
dropout: float=0. Probability of setting units to zero.
bn_size: int=4. The number of channals per group
Returns:
model: nn.Layer. Specific `DenseNet121` model depends on args.
"""
model
=
_densenet
.
DenseNet121
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'DenseNet121'
)
...
...
@@ -205,8 +311,17 @@ def DenseNet121(pretrained=False, **kwargs):
def
DenseNet161
(
pretrained
=
False
,
**
kwargs
):
'''DenseNet161
'''
"""
DenseNet161
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
dropout: float=0. Probability of setting units to zero.
bn_size: int=4. The number of channals per group
Returns:
model: nn.Layer. Specific `DenseNet161` model depends on args.
"""
model
=
_densenet
.
DenseNet161
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'DenseNet161'
)
...
...
@@ -215,8 +330,17 @@ def DenseNet161(pretrained=False, **kwargs):
def
DenseNet169
(
pretrained
=
False
,
**
kwargs
):
'''DenseNet169
'''
"""
DenseNet169
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
dropout: float=0. Probability of setting units to zero.
bn_size: int=4. The number of channals per group
Returns:
model: nn.Layer. Specific `DenseNet169` model depends on args.
"""
model
=
_densenet
.
DenseNet169
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'DenseNet169'
)
...
...
@@ -225,8 +349,17 @@ def DenseNet169(pretrained=False, **kwargs):
def
DenseNet201
(
pretrained
=
False
,
**
kwargs
):
'''DenseNet201
'''
"""
DenseNet201
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
dropout: float=0. Probability of setting units to zero.
bn_size: int=4. The number of channals per group
Returns:
model: nn.Layer. Specific `DenseNet201` model depends on args.
"""
model
=
_densenet
.
DenseNet201
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'DenseNet201'
)
...
...
@@ -235,8 +368,17 @@ def DenseNet201(pretrained=False, **kwargs):
def
DenseNet264
(
pretrained
=
False
,
**
kwargs
):
'''DenseNet264
'''
"""
DenseNet264
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
dropout: float=0. Probability of setting units to zero.
bn_size: int=4. The number of channals per group
Returns:
model: nn.Layer. Specific `DenseNet264` model depends on args.
"""
model
=
_densenet
.
DenseNet264
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'DenseNet264'
)
...
...
@@ -246,8 +388,15 @@ def DenseNet264(pretrained=False, **kwargs):
def
InceptionV3
(
pretrained
=
False
,
**
kwargs
):
'''InceptionV3
'''
"""
InceptionV3
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `InceptionV3` model depends on args.
"""
model
=
_inception_v3
.
InceptionV3
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'InceptionV3'
)
...
...
@@ -256,8 +405,15 @@ def InceptionV3(pretrained=False, **kwargs):
def
InceptionV4
(
pretrained
=
False
,
**
kwargs
):
'''InceptionV4
'''
"""
InceptionV4
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `InceptionV4` model depends on args.
"""
model
=
_inception_v4
.
InceptionV4
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'InceptionV4'
)
...
...
@@ -267,8 +423,15 @@ def InceptionV4(pretrained=False, **kwargs):
def
GoogLeNet
(
pretrained
=
False
,
**
kwargs
):
'''GoogLeNet
'''
"""
GoogLeNet
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `GoogLeNet` model depends on args.
"""
model
=
_googlenet
.
GoogLeNet
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'GoogLeNet'
)
...
...
@@ -278,8 +441,15 @@ def GoogLeNet(pretrained=False, **kwargs):
def
ShuffleNet
(
pretrained
=
False
,
**
kwargs
):
'''ShuffleNet
'''
"""
ShuffleNet
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `ShuffleNet` model depends on args.
"""
model
=
_shufflenet_v2
.
ShuffleNet
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ShuffleNet'
)
...
...
@@ -289,8 +459,15 @@ def ShuffleNet(pretrained=False, **kwargs):
def
MobileNetV1
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV1
'''
"""
MobileNetV1
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV1` model depends on args.
"""
model
=
_mobilenet_v1
.
MobileNetV1
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1'
)
...
...
@@ -299,8 +476,15 @@ def MobileNetV1(pretrained=False, **kwargs):
def
MobileNetV1_x0_25
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV1_x0_25
'''
"""
MobileNetV1_x0_25
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV1_x0_25` model depends on args.
"""
model
=
_mobilenet_v1
.
MobileNetV1_x0_25
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1_x0_25'
)
...
...
@@ -309,8 +493,15 @@ def MobileNetV1_x0_25(pretrained=False, **kwargs):
def
MobileNetV1_x0_5
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV1_x0_5
'''
"""
MobileNetV1_x0_5
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV1_x0_5` model depends on args.
"""
model
=
_mobilenet_v1
.
MobileNetV1_x0_5
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1_x0_5'
)
...
...
@@ -319,8 +510,15 @@ def MobileNetV1_x0_5(pretrained=False, **kwargs):
def
MobileNetV1_x0_75
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV1_x0_75
'''
"""
MobileNetV1_x0_75
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV1_x0_75` model depends on args.
"""
model
=
_mobilenet_v1
.
MobileNetV1_x0_75
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1_x0_75'
)
...
...
@@ -329,8 +527,15 @@ def MobileNetV1_x0_75(pretrained=False, **kwargs):
def
MobileNetV2_x0_25
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV2_x0_25
'''
"""
MobileNetV2_x0_25
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV2_x0_25` model depends on args.
"""
model
=
_mobilenet_v2
.
MobileNetV2_x0_25
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x0_25'
)
...
...
@@ -339,8 +544,15 @@ def MobileNetV2_x0_25(pretrained=False, **kwargs):
def
MobileNetV2_x0_5
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV2_x0_5
'''
"""
MobileNetV2_x0_5
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV2_x0_5` model depends on args.
"""
model
=
_mobilenet_v2
.
MobileNetV2_x0_5
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x0_5'
)
...
...
@@ -349,8 +561,15 @@ def MobileNetV2_x0_5(pretrained=False, **kwargs):
def
MobileNetV2_x0_75
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV2_x0_75
'''
"""
MobileNetV2_x0_75
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV2_x0_75` model depends on args.
"""
model
=
_mobilenet_v2
.
MobileNetV2_x0_75
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x0_75'
)
...
...
@@ -359,8 +578,15 @@ def MobileNetV2_x0_75(pretrained=False, **kwargs):
def
MobileNetV2_x1_5
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV2_x1_5
'''
"""
MobileNetV2_x1_5
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV2_x1_5` model depends on args.
"""
model
=
_mobilenet_v2
.
MobileNetV2_x1_5
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x1_5'
)
...
...
@@ -369,8 +595,15 @@ def MobileNetV2_x1_5(pretrained=False, **kwargs):
def
MobileNetV2_x2_0
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV2_x2_0
'''
"""
MobileNetV2_x2_0
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV2_x2_0` model depends on args.
"""
model
=
_mobilenet_v2
.
MobileNetV2_x2_0
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x2_0'
)
...
...
@@ -379,8 +612,15 @@ def MobileNetV2_x2_0(pretrained=False, **kwargs):
def
MobileNetV3_large_x0_35
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_large_x0_35
'''
"""
MobileNetV3_large_x0_35
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV3_large_x0_35` model depends on args.
"""
model
=
_mobilenet_v3
.
MobileNetV3_large_x0_35
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x0_35'
)
...
...
@@ -389,8 +629,15 @@ def MobileNetV3_large_x0_35(pretrained=False, **kwargs):
def
MobileNetV3_large_x0_5
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_large_x0_5
'''
"""
MobileNetV3_large_x0_5
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV3_large_x0_5` model depends on args.
"""
model
=
_mobilenet_v3
.
MobileNetV3_large_x0_5
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x0_5'
)
...
...
@@ -399,8 +646,15 @@ def MobileNetV3_large_x0_5(pretrained=False, **kwargs):
def
MobileNetV3_large_x0_75
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_large_x0_75
'''
"""
MobileNetV3_large_x0_75
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV3_large_x0_75` model depends on args.
"""
model
=
_mobilenet_v3
.
MobileNetV3_large_x0_75
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x0_75'
)
...
...
@@ -409,8 +663,15 @@ def MobileNetV3_large_x0_75(pretrained=False, **kwargs):
def
MobileNetV3_large_x1_0
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_large_x1_0
'''
"""
MobileNetV3_large_x1_0
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV3_large_x1_0` model depends on args.
"""
model
=
_mobilenet_v3
.
MobileNetV3_large_x1_0
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x1_0'
)
...
...
@@ -419,8 +680,15 @@ def MobileNetV3_large_x1_0(pretrained=False, **kwargs):
def
MobileNetV3_large_x1_25
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_large_x1_25
'''
"""
MobileNetV3_large_x1_25
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV3_large_x1_25` model depends on args.
"""
model
=
_mobilenet_v3
.
MobileNetV3_large_x1_25
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x1_25'
)
...
...
@@ -429,8 +697,15 @@ def MobileNetV3_large_x1_25(pretrained=False, **kwargs):
def
MobileNetV3_small_x0_35
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_small_x0_35
'''
"""
MobileNetV3_small_x0_35
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV3_small_x0_35` model depends on args.
"""
model
=
_mobilenet_v3
.
MobileNetV3_small_x0_35
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x0_35'
)
...
...
@@ -439,8 +714,15 @@ def MobileNetV3_small_x0_35(pretrained=False, **kwargs):
def
MobileNetV3_small_x0_5
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_small_x0_5
'''
"""
MobileNetV3_small_x0_5
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV3_small_x0_5` model depends on args.
"""
model
=
_mobilenet_v3
.
MobileNetV3_small_x0_5
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x0_5'
)
...
...
@@ -449,8 +731,15 @@ def MobileNetV3_small_x0_5(pretrained=False, **kwargs):
def
MobileNetV3_small_x0_75
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_small_x0_75
'''
"""
MobileNetV3_small_x0_75
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV3_small_x0_75` model depends on args.
"""
model
=
_mobilenet_v3
.
MobileNetV3_small_x0_75
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x0_75'
)
...
...
@@ -459,8 +748,15 @@ def MobileNetV3_small_x0_75(pretrained=False, **kwargs):
def
MobileNetV3_small_x1_0
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_small_x1_0
'''
"""
MobileNetV3_small_x1_0
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV3_small_x1_0` model depends on args.
"""
model
=
_mobilenet_v3
.
MobileNetV3_small_x1_0
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x1_0'
)
...
...
@@ -469,8 +765,15 @@ def MobileNetV3_small_x1_0(pretrained=False, **kwargs):
def
MobileNetV3_small_x1_25
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_small_x1_25
'''
"""
MobileNetV3_small_x1_25
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `MobileNetV3_small_x1_25` model depends on args.
"""
model
=
_mobilenet_v3
.
MobileNetV3_small_x1_25
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x1_25'
)
...
...
@@ -480,8 +783,15 @@ def MobileNetV3_small_x1_25(pretrained=False, **kwargs):
def
ResNeXt101_32x4d
(
pretrained
=
False
,
**
kwargs
):
'''ResNeXt101_32x4d
'''
"""
ResNeXt101_32x4d
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `ResNeXt101_32x4d` model depends on args.
"""
model
=
_resnext
.
ResNeXt101_32x4d
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt101_32x4d'
)
...
...
@@ -490,8 +800,15 @@ def ResNeXt101_32x4d(pretrained=False, **kwargs):
def
ResNeXt101_64x4d
(
pretrained
=
False
,
**
kwargs
):
'''ResNeXt101_64x4d
'''
"""
ResNeXt101_64x4d
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `ResNeXt101_64x4d` model depends on args.
"""
model
=
_resnext
.
ResNeXt101_64x4d
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt101_64x4d'
)
...
...
@@ -500,8 +817,15 @@ def ResNeXt101_64x4d(pretrained=False, **kwargs):
def
ResNeXt152_32x4d
(
pretrained
=
False
,
**
kwargs
):
'''ResNeXt152_32x4d
'''
"""
ResNeXt152_32x4d
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `ResNeXt152_32x4d` model depends on args.
"""
model
=
_resnext
.
ResNeXt152_32x4d
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt152_32x4d'
)
...
...
@@ -510,8 +834,15 @@ def ResNeXt152_32x4d(pretrained=False, **kwargs):
def
ResNeXt152_64x4d
(
pretrained
=
False
,
**
kwargs
):
'''ResNeXt152_64x4d
'''
"""
ResNeXt152_64x4d
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `ResNeXt152_64x4d` model depends on args.
"""
model
=
_resnext
.
ResNeXt152_64x4d
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt152_64x4d'
)
...
...
@@ -520,8 +851,15 @@ def ResNeXt152_64x4d(pretrained=False, **kwargs):
def
ResNeXt50_32x4d
(
pretrained
=
False
,
**
kwargs
):
'''ResNeXt50_32x4d
'''
"""
ResNeXt50_32x4d
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `ResNeXt50_32x4d` model depends on args.
"""
model
=
_resnext
.
ResNeXt50_32x4d
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt50_32x4d'
)
...
...
@@ -530,8 +868,15 @@ def ResNeXt50_32x4d(pretrained=False, **kwargs):
def
ResNeXt50_64x4d
(
pretrained
=
False
,
**
kwargs
):
'''ResNeXt50_64x4d
'''
"""
ResNeXt50_64x4d
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `ResNeXt50_64x4d` model depends on args.
"""
model
=
_resnext
.
ResNeXt50_64x4d
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt50_64x4d'
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录