未验证 提交 7848c4df 编写于 作者: C cuicheng01 提交者: GitHub

Merge pull request #1570 from TingquanGao/dev/update_benchmark

docs: update benchmark curve
...@@ -8,14 +8,21 @@ Based on the ImageNet-1k classification dataset, the 35 classification network s ...@@ -8,14 +8,21 @@ Based on the ImageNet-1k classification dataset, the 35 classification network s
Curves of accuracy to the inference time of common server-side models are shown as follows. Curves of accuracy to the inference time of common server-side models are shown as follows.
![](../images/models/T4_benchmark/t4.fp32.bs1.main_fps_top1.png) <div align="center">
<img src="../../images/models/V100_benchmark/v100.fp32.bs1.main_fps_top1_s.png" width="800">
</div>
Curves of accuracy to the inference time of common mobile-side models are shown as follows.
Curves of accuracy to the inference time and storage size of common mobile-side models are shown as follows. <div align="center">
<img src="../../images/models/mobile_arm_top1.png" width="800">
</div>
![](../images/models/mobile_arm_storage.png) Curves of accuracy to the inference time of some VisionTransformer models are shown as follows.
![](../images/models/mobile_arm_top1.png) <div align="center">
<img src="../../images/models/V100_benchmark/v100.fp32.bs1.visiontransformer.png" width="800">
</div>
<a name="SSLD_pretrained_series"></a> <a name="SSLD_pretrained_series"></a>
### SSLD pretrained models ### SSLD pretrained models
......
...@@ -5,7 +5,7 @@ ...@@ -5,7 +5,7 @@
Based on the ImageNet1k classification dataset, the 29 classification network structures supported by PaddleClas and the corresponding 134 image classification pretrained models are shown below. Training trick, a brief introduction to each series of network structures, and performance evaluation will be shown in the corresponding chapters. Based on the ImageNet1k classification dataset, the 29 classification network structures supported by PaddleClas and the corresponding 134 image classification pretrained models are shown below. Training trick, a brief introduction to each series of network structures, and performance evaluation will be shown in the corresponding chapters.
## Evaluation environment ## Evaluation environment
* CPU evaluation environment is based on Snapdragon 855 (SD855). * Arm evaluation environment is based on Snapdragon 855 (SD855).
* The GPU evaluation environment is based on V100 and TensorRT, and the evaluation script is as follows. * The GPU evaluation environment is based on V100 and TensorRT, and the evaluation script is as follows.
```shell ```shell
...@@ -23,12 +23,17 @@ python tools/infer/predict.py \ ...@@ -23,12 +23,17 @@ python tools/infer/predict.py \
--batch_size=1 --batch_size=1
``` ```
![](../../images/models/T4_benchmark/t4.fp32.bs4.main_fps_top1.png) <div align="center">
<img src="../../images/models/V100_benchmark/v100.fp32.bs1.main_fps_top1_s.png" width="800">
</div>
![](../../images/models/V100_benchmark/v100.fp32.bs1.main_fps_top1_s.jpg) <div align="center">
<img src="../../images/models/mobile_arm_top1.png" width="800">
![](../../images/models/mobile_arm_top1.png) </div>
<div align="center">
<img src="../../images/models/V100_benchmark/v100.fp32.bs1.visiontransformer.png" width="800">
</div>
> If you think this document is helpful to you, welcome to give a star to our project:[https://github.com/PaddlePaddle/PaddleClas](https://github.com/PaddlePaddle/PaddleClas) > If you think this document is helpful to you, welcome to give a star to our project:[https://github.com/PaddlePaddle/PaddleClas](https://github.com/PaddlePaddle/PaddleClas)
......
docs/images/models/mobile_arm_top1.png

140.6 KB | W: | H:

docs/images/models/mobile_arm_top1.png

357.0 KB | W: | H:

docs/images/models/mobile_arm_top1.png
docs/images/models/mobile_arm_top1.png
docs/images/models/mobile_arm_top1.png
docs/images/models/mobile_arm_top1.png
  • 2-up
  • Swipe
  • Onion skin
...@@ -44,14 +44,21 @@ ...@@ -44,14 +44,21 @@
常见服务器端模型的精度指标与其预测耗时的变化曲线如下图所示。 常见服务器端模型的精度指标与其预测耗时的变化曲线如下图所示。
![](../../images/models/T4_benchmark/t4.fp32.bs1.main_fps_top1.png) <div align="center">
<img src="../../images/models/V100_benchmark/v100.fp32.bs1.main_fps_top1_s.png" width="800">
</div>
常见移动端模型的精度指标与其预测耗时的变化曲线如下图所示。
常见移动端模型的精度指标与其预测耗时、模型存储大小的变化曲线如下图所示。 <div align="center">
<img src="../../images/models/mobile_arm_top1.png" width="800">
</div>
![](../../images/models/mobile_arm_storage.png) 部分VisionTransformer模型的精度指标与其预测耗时的变化曲线如下图所示。
![](../../images/models/mobile_arm_top1.png) <div align="center">
<img src="../../images/models/V100_benchmark/v100.fp32.bs1.visiontransformer.png" width="800">
</div>
<a name="2"></a> <a name="2"></a>
......
...@@ -16,17 +16,21 @@ ...@@ -16,17 +16,21 @@
<a name='2'></a> <a name='2'></a>
## 2. 评估环境 ## 2. 评估环境
* CPU 的评估环境基于骁龙 855(SD855)。 * Arm 的评估环境基于骁龙 855(SD855)。
* Intel CPU 的评估环境基于 Intel(R) Xeon(R) Gold 6148。 * Intel CPU 的评估环境基于 Intel(R) Xeon(R) Gold 6148。
* GPU 评估环境基于 V100 和 TensorRT。 * GPU 评估环境基于 V100 和 TensorRT。
<div align="center">
<img src="../../images/models/V100_benchmark/v100.fp32.bs1.main_fps_top1_s.png" width="800">
</div>
![](../../images/models/T4_benchmark/t4.fp32.bs4.main_fps_top1.png) <div align="center">
<img src="../../images/models/mobile_arm_top1.png" width="800">
![](../../images/models/V100_benchmark/v100.fp32.bs1.main_fps_top1_s.jpg) </div>
![](../../images/models/mobile_arm_top1.png)
<div align="center">
<img src="../../images/models/V100_benchmark/v100.fp32.bs1.visiontransformer.png" width="800">
</div>
> 如果您觉得此文档对您有帮助,欢迎 star 我们的项目:[https://github.com/PaddlePaddle/PaddleClas](https://github.com/PaddlePaddle/PaddleClas) > 如果您觉得此文档对您有帮助,欢迎 star 我们的项目:[https://github.com/PaddlePaddle/PaddleClas](https://github.com/PaddlePaddle/PaddleClas)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册