提交 773ceaa8 编写于 作者: W WuHaobo

add program.py

上级 bd67368c
...@@ -33,39 +33,12 @@ from ppcls.modeling.loss import GoogLeNetLoss ...@@ -33,39 +33,12 @@ from ppcls.modeling.loss import GoogLeNetLoss
from ppcls.utils.misc import AverageMeter from ppcls.utils.misc import AverageMeter
from ppcls.utils import logger from ppcls.utils import logger
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.incubate.fleet.collective import fleet from paddle.fluid.incubate.fleet.collective import fleet
from paddle.fluid.incubate.fleet.collective import DistributedStrategy from paddle.fluid.incubate.fleet.collective import DistributedStrategy
def create_feeds(image_shape, use_mix=None): def create_dataloader():
"""
Create feeds as model input
Args:
image_shape(list[int]): model input shape, such as [3, 224, 224]
use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
Returns:
feeds(dict): dict of model input variables
"""
feeds = OrderedDict()
feeds['image'] = fluid.data(
name="feed_image", shape=[None] + image_shape, dtype="float32")
if use_mix:
feeds['feed_y_a'] = fluid.data(
name="feed_y_a", shape=[None, 1], dtype="int64")
feeds['feed_y_b'] = fluid.data(
name="feed_y_b", shape=[None, 1], dtype="int64")
feeds['feed_lam'] = fluid.data(
name="feed_lam", shape=[None, 1], dtype="float32")
else:
feeds['label'] = fluid.data(
name="feed_label", shape=[None, 1], dtype="int64")
return feeds
def create_dataloader(feeds):
""" """
Create a dataloader with model input variables Create a dataloader with model input variables
...@@ -78,7 +51,6 @@ def create_dataloader(feeds): ...@@ -78,7 +51,6 @@ def create_dataloader(feeds):
trainer_num = int(os.environ.get('PADDLE_TRAINERS_NUM', 1)) trainer_num = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
capacity = 64 if trainer_num <= 1 else 8 capacity = 64 if trainer_num <= 1 else 8
dataloader = fluid.io.DataLoader.from_generator( dataloader = fluid.io.DataLoader.from_generator(
feed_list=feeds,
capacity=capacity, capacity=capacity,
use_double_buffer=True, use_double_buffer=True,
iterable=True) iterable=True)
...@@ -86,7 +58,7 @@ def create_dataloader(feeds): ...@@ -86,7 +58,7 @@ def create_dataloader(feeds):
return dataloader return dataloader
def create_model(architecture, image, classes_num): def create_model(architecture, classes_num):
""" """
Create a model Create a model
...@@ -101,13 +73,11 @@ def create_model(architecture, image, classes_num): ...@@ -101,13 +73,11 @@ def create_model(architecture, image, classes_num):
""" """
name = architecture["name"] name = architecture["name"]
params = architecture.get("params", {}) params = architecture.get("params", {})
model = architectures.__dict__[name](**params) return architectures.__dict__[name](class_dim=classes_num, **params)
out = model.net(input=image, class_dim=classes_num)
return out
def create_loss(out, def create_loss(out,
feeds, label,
architecture, architecture,
classes_num=1000, classes_num=1000,
epsilon=None, epsilon=None,
...@@ -136,8 +106,7 @@ def create_loss(out, ...@@ -136,8 +106,7 @@ def create_loss(out,
if architecture["name"] == "GoogLeNet": if architecture["name"] == "GoogLeNet":
assert len(out) == 3, "GoogLeNet should have 3 outputs" assert len(out) == 3, "GoogLeNet should have 3 outputs"
loss = GoogLeNetLoss(class_dim=classes_num, epsilon=epsilon) loss = GoogLeNetLoss(class_dim=classes_num, epsilon=epsilon)
target = feeds['label'] return loss(out[0], out[1], out[2], label)
return loss(out[0], out[1], out[2], target)
if use_distillation: if use_distillation:
assert len(out) == 2, ("distillation output length must be 2, " assert len(out) == 2, ("distillation output length must be 2, "
...@@ -147,18 +116,18 @@ def create_loss(out, ...@@ -147,18 +116,18 @@ def create_loss(out,
if use_mix: if use_mix:
loss = MixCELoss(class_dim=classes_num, epsilon=epsilon) loss = MixCELoss(class_dim=classes_num, epsilon=epsilon)
feed_y_a = feeds['feed_y_a'] raise NotImplementedError
feed_y_b = feeds['feed_y_b'] #feed_y_a = feeds['feed_y_a']
feed_lam = feeds['feed_lam'] #feed_y_b = feeds['feed_y_b']
return loss(out, feed_y_a, feed_y_b, feed_lam) #feed_lam = feeds['feed_lam']
#return loss(out, feed_y_a, feed_y_b, feed_lam)
else: else:
loss = CELoss(class_dim=classes_num, epsilon=epsilon) loss = CELoss(class_dim=classes_num, epsilon=epsilon)
target = feeds['label'] return loss(out, label)
return loss(out, target)
def create_metric(out, def create_metric(out,
feeds, label,
architecture, architecture,
topk=5, topk=5,
classes_num=1000, classes_num=1000,
...@@ -186,19 +155,19 @@ def create_metric(out, ...@@ -186,19 +155,19 @@ def create_metric(out,
fetchs = OrderedDict() fetchs = OrderedDict()
# set top1 to fetchs # set top1 to fetchs
top1 = fluid.layers.accuracy(softmax_out, label=feeds['label'], k=1) top1 = fluid.layers.accuracy(softmax_out, label=label, k=1)
fetchs['top1'] = (top1, AverageMeter('top1', '.4f', need_avg=True)) fetchs['top1'] = top1
# set topk to fetchs # set topk to fetchs
k = min(topk, classes_num) k = min(topk, classes_num)
topk = fluid.layers.accuracy(softmax_out, label=feeds['label'], k=k) topk = fluid.layers.accuracy(softmax_out, label=label, k=k)
topk_name = 'top{}'.format(k) topk_name = 'top{}'.format(k)
fetchs[topk_name] = (topk, AverageMeter(topk_name, '.4f', need_avg=True)) fetchs[topk_name] = topk
return fetchs return fetchs
def create_fetchs(out, def create_fetchs(out,
feeds, label,
architecture, architecture,
topk=5, topk=5,
classes_num=1000, classes_num=1000,
...@@ -224,18 +193,17 @@ def create_fetchs(out, ...@@ -224,18 +193,17 @@ def create_fetchs(out,
fetchs(dict): dict of model outputs(included loss and measures) fetchs(dict): dict of model outputs(included loss and measures)
""" """
fetchs = OrderedDict() fetchs = OrderedDict()
loss = create_loss(out, feeds, architecture, classes_num, epsilon, use_mix, fetchs['loss'] = create_loss(out, label, architecture, classes_num, epsilon, use_mix,
use_distillation) use_distillation)
fetchs['loss'] = (loss, AverageMeter('loss', '7.4f', need_avg=True))
if not use_mix: if not use_mix:
metric = create_metric(out, feeds, architecture, topk, classes_num, metric = create_metric(out, label, architecture, topk, classes_num,
use_distillation) use_distillation)
fetchs.update(metric) fetchs.update(metric)
return fetchs return fetchs
def create_optimizer(config): def create_optimizer(config, parameter_list=None):
""" """
Create an optimizer using config, usually including Create an optimizer using config, usually including
learning rate and regularization. learning rate and regularization.
...@@ -270,7 +238,7 @@ def create_optimizer(config): ...@@ -270,7 +238,7 @@ def create_optimizer(config):
# create optimizer instance # create optimizer instance
opt_config = config['OPTIMIZER'] opt_config = config['OPTIMIZER']
opt = OptimizerBuilder(**opt_config) opt = OptimizerBuilder(**opt_config)
return opt(lr) return opt(lr, parameter_list)
def dist_optimizer(config, optimizer): def dist_optimizer(config, optimizer):
...@@ -310,7 +278,7 @@ def mixed_precision_optimizer(config, optimizer): ...@@ -310,7 +278,7 @@ def mixed_precision_optimizer(config, optimizer):
return optimizer return optimizer
def build(config, main_prog, startup_prog, is_train=True): def compute(config, out, label, mode='train'):
""" """
Build a program using a model and an optimizer Build a program using a model and an optimizer
1. create feeds 1. create feeds
...@@ -329,62 +297,20 @@ def build(config, main_prog, startup_prog, is_train=True): ...@@ -329,62 +297,20 @@ def build(config, main_prog, startup_prog, is_train=True):
dataloader(): a bridge between the model and the data dataloader(): a bridge between the model and the data
fetchs(dict): dict of model outputs(included loss and measures) fetchs(dict): dict of model outputs(included loss and measures)
""" """
with fluid.program_guard(main_prog, startup_prog): fetchs = create_fetchs(
with fluid.unique_name.guard(): out,
use_mix = config.get('use_mix') and is_train label,
use_distillation = config.get('use_distillation') config.ARCHITECTURE,
feeds = create_feeds(config.image_shape, use_mix=use_mix) config.topk,
dataloader = create_dataloader(feeds.values()) config.classes_num,
out = create_model(config.ARCHITECTURE, feeds['image'], epsilon=config.get('ls_epsilon'),
config.classes_num) use_mix=config.get('use_mix') and mode == 'train',
fetchs = create_fetchs( use_distillation=config.get('use_distillation'))
out,
feeds,
config.ARCHITECTURE,
config.topk,
config.classes_num,
epsilon=config.get('ls_epsilon'),
use_mix=use_mix,
use_distillation=use_distillation)
if is_train:
optimizer = create_optimizer(config)
lr = optimizer._global_learning_rate()
fetchs['lr'] = (lr, AverageMeter('lr', 'f', need_avg=False))
optimizer = mixed_precision_optimizer(config, optimizer)
optimizer = dist_optimizer(config, optimizer)
optimizer.minimize(fetchs['loss'][0])
return dataloader, fetchs
def compile(config, program, loss_name=None):
"""
Compile the program
Args: return fetchs
config(dict): config
program(): the program which is wrapped by
loss_name(str): loss name
Returns:
compiled_program(): a compiled program
"""
build_strategy = fluid.compiler.BuildStrategy()
exec_strategy = fluid.ExecutionStrategy()
exec_strategy.num_threads = 1
exec_strategy.num_iteration_per_drop_scope = 10
compiled_program = fluid.CompiledProgram(program).with_data_parallel(
loss_name=loss_name,
build_strategy=build_strategy,
exec_strategy=exec_strategy)
return compiled_program
def run(dataloader, exe, program, fetchs, epoch=0, mode='train'): def run(dataloader, config, net, optimizer=None, epoch=0, mode='train'):
""" """
Feed data to the model and fetch the measures and loss Feed data to the model and fetch the measures and loss
...@@ -398,44 +324,58 @@ def run(dataloader, exe, program, fetchs, epoch=0, mode='train'): ...@@ -398,44 +324,58 @@ def run(dataloader, exe, program, fetchs, epoch=0, mode='train'):
Returns: Returns:
""" """
fetch_list = [f[0] for f in fetchs.values()] topk_name = 'top{}'.format(config.topk)
metric_list = [f[1] for f in fetchs.values()] metric_list = OrderedDict([
for m in metric_list: ("loss", AverageMeter('loss', '7.4f')),
m.reset() ("top1", AverageMeter('top1', '.4f')),
batch_time = AverageMeter('elapse', '.3f') (topk_name, AverageMeter(topk_name, '.4f')),
("lr", AverageMeter('lr', 'f', need_avg=False)),
("batch_time", AverageMeter('elapse', '.3f')),
])
tic = time.time() tic = time.time()
for idx, batch in enumerate(dataloader()): for idx, (img, label) in enumerate(dataloader()):
metrics = exe.run(program=program, feed=batch, fetch_list=fetch_list) label = to_variable(label.numpy().astype('int64').reshape(-1, 1))
batch_time.update(time.time() - tic) fetchs = compute(config, net(img), label, mode)
if mode == 'train':
avg_loss = net.scale_loss(fetchs['loss'])
avg_loss.backward()
net.apply_collective_grads()
optimizer.minimize(avg_loss)
net.clear_gradients()
metric_list['lr'].update(
optimizer._global_learning_rate().numpy()[0], len(img))
for name, fetch in fetchs.items():
metric_list[name].update(fetch.numpy()[0], len(img))
metric_list['batch_time'].update(time.time() - tic)
tic = time.time() tic = time.time()
for i, m in enumerate(metrics):
metric_list[i].update(m[0], len(batch[0])) fetchs_str = ' '.join([str(m.value) for m in metric_list.values()])
fetchs_str = ''.join([str(m.value) + ' '
for m in metric_list] + [batch_time.value]) + 's'
if mode == 'eval': if mode == 'eval':
logger.info("{:s} step:{:<4d} {:s}s".format(mode, idx, fetchs_str)) logger.info("{:s} step:{:<4d} {:s}s".format(mode, idx, fetchs_str))
else: else:
epoch_str = "epoch:{:<3d}".format(epoch) epoch_str = "epoch:{:<3d}".format(epoch)
step_str = "{:s} step:{:<4d}".format(mode, idx) step_str = "{:s} step:{:<4d}".format(mode, idx)
logger.info("{:s} {:s} {:s}".format( logger.info("{:s} {:s} {:s}s".format(
logger.coloring(epoch_str, "HEADER") logger.coloring(epoch_str, "HEADER")
if idx == 0 else epoch_str, if idx == 0 else epoch_str,
logger.coloring(step_str, "PURPLE"), logger.coloring(step_str, "PURPLE"),
logger.coloring(fetchs_str, 'OKGREEN'))) logger.coloring(fetchs_str, 'OKGREEN')))
end_str = ''.join([str(m.mean) + ' ' end_str = ' '.join([str(m.mean) for m in metric_list.values()] + [metric_list['batch_time'].total])
for m in metric_list] + [batch_time.total]) + 's'
if mode == 'eval': if mode == 'eval':
logger.info("END {:s} {:s}s".format(mode, end_str)) logger.info("END {:s} {:s}s".format(mode, end_str))
else: else:
end_epoch_str = "END epoch:{:<3d}".format(epoch) end_epoch_str = "END epoch:{:<3d}".format(epoch)
logger.info("{:s} {:s} {:s}".format( logger.info("{:s} {:s} {:s}s".format(
logger.coloring(end_epoch_str, "RED"), logger.coloring(end_epoch_str, "RED"),
logger.coloring(mode, "PURPLE"), logger.coloring(mode, "PURPLE"),
logger.coloring(end_str, "OKGREEN"))) logger.coloring(end_str, "OKGREEN")))
# return top1_acc in order to save the best model # return top1_acc in order to save the best model
if mode == 'valid': if mode == 'valid':
return fetchs["top1"][1].avg return metric_list['top1'].avg
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册