提交 7569a626 编写于 作者: H HydrogenSulfate

update en docs

上级 3254addf
......@@ -22,7 +22,7 @@
## 近期更新
- 🔥️ 发布[PP-ShiTuV2](./docs/zh_CN/PPShiTu/PPShiTuV2_introduction.md),recall1精度提升10个点,覆盖20+识别场景,新增库管理工具,Android Demo全新体验。
- 🔥️ 发布[PP-ShiTuV2](./docs/zh_CN/PPShiTu/PPShiTuV2_introduction.md),recall1精度提升8个点,覆盖20+识别场景,新增[库管理工具](./deploy/shitu_index_manager/)[Android Demo](./docs/zh_CN/quick_start/quick_start_recognition.md)全新体验。
- 2022.9.4 新增[生鲜产品自主结算范例库](https://aistudio.baidu.com/aistudio/projectdetail/4486158),具体内容可以在AI Studio上体验。
- 2022.6.15 发布[PULC超轻量图像分类实用方案](docs/zh_CN/PULC/PULC_train.md),CPU推理3ms,精度比肩SwinTransformer,覆盖人、车、OCR场景九大常见任务。
- 2022.5.23 新增[人员出入管理范例库](https://aistudio.baidu.com/aistudio/projectdetail/4094475),具体内容可以在 AI Studio 上体验。
......
......@@ -22,7 +22,7 @@ PULC demo images
**Recent updates**
- 🔥️ Release [PP-ShiTuV2](./docs/en/PPShiTu/PPShiTuV2_introduction.md), recall1 is improved by nearly 8 points, covering 20+ recognition scenarios, with [index management tool](./deploy/shitu_index_manager/README.md) and [Android Demo](./docs/en/quick_start/quick_start_recognition_en.md) for better experience.
- 🔥️ Release [PP-ShiTuV2](./docs/en/PPShiTu/PPShiTuV2_introduction.md), recall1 is improved by nearly 8 points, covering 20+ recognition scenarios, with [index management tool](./deploy/shitu_index_manager) and [Android Demo](./docs/en/quick_start/quick_start_recognition_en.md) for better experience.
- 2022.6.15 Release [**P**ractical **U**ltra **L**ight-weight image **C**lassification solutions](./docs/en/PULC/PULC_quickstart_en.md). PULC models inference within 3ms on CPU devices, with accuracy on par with SwinTransformer. We also release 9 practical classification models covering pedestrian, vehicle and OCR scenario.
- 2022.4.21 Added the related [code](https://github.com/PaddlePaddle/PaddleClas/pull/1820/files) of the CVPR2022 oral paper [MixFormer](https://arxiv.org/pdf/2204.02557.pdf).
......
......@@ -113,9 +113,9 @@ We adjust the `PPLCNetV2_base` structure, and added more general and effective o
3. `BN Neck`: Add a `BatchNorm1D` layer after `BackBone` to normalize each dimension of the feature vector, bringing faster convergence.
| Model | training data | recall@1%(mAP%) |
| :----------------------------------------------------------------- | :----------------- | :-------------- |
| GeneralRecognition_PPLCNet_x2_5 | PP-ShiTuV1 dataset | 65.9(54.3) |
| Model | training data | recall@1%(mAP%) |
| :----------------------------------------------- | :----------------- | :-------------- |
| GeneralRecognition_PPLCNet_x2_5 | PP-ShiTuV1 dataset | 65.9(54.3) |
| GeneralRecognitionV2_PPLCNetV2_base(TripletLoss) | PP-ShiTuV1 dataset | 72.3(60.5) |
4. `TripletAngularMarginLoss`: We improved on the original `TripletLoss` (difficult triplet loss), changed the optimization objective from L2 Euclidean space to cosine space, and added an additional space between anchor and positive/negtive The hard distance constraint makes the training and testing goals closer and improves the generalization ability of the model.
......@@ -127,26 +127,26 @@ We adjust the `PPLCNetV2_base` structure, and added more general and effective o
#### Data Augmentation
The target object may rotate to a certain extent and may not maintain an upright state when the actual camera is shot, so we add [random rotation augmentation](../../../ppcls/configs/GeneralRecognitionV2/GeneralRecognitionV2_PPLCNetV2_base.yaml#L117) in the data augmentation to make retrieval more robust in real scenes.
The target object may rotate to a certain extent and may not maintain an upright state when the actual camera is shot, so we add [Random Rotation](../../../ppcls/configs/GeneralRecognitionV2/GeneralRecognitionV2_PPLCNetV2_base.yaml#L117) in the data augmentation to make retrieval more robust in real scenes.
Combining the above strategies, the final experimental results on multiple data sets are as follows:
| Model | product<sup>*</sup> |
| :--------- | :------------------ |
| - | recall@1%(mAP%) |
| GeneralRecognition_PPLCNet_x2_5 | 65.9(54.3) |
| Model | product<sup>*</sup> |
| :---------------------------------- | :------------------ |
| - | recall@1%(mAP%) |
| GeneralRecognition_PPLCNet_x2_5 | 65.9(54.3) |
| GeneralRecognitionV2_PPLCNetV2_base | 73.7(61.0) |
| Models | Aliproduct | VeRI-Wild | LogoDet-3k | iCartoonFace | SOP | Inshop |
| :--------- | :-------------- | :-------------- | :-------------- | :-------------- | :-------------- | :--------------- |
| - | recall@1%(mAP%) | recall@1%(mAP%) | recall@1%(mAP%) | recall@1%(mAP%) | recall@1%(mAP%) | recall@ 1%(mAP%) |
| GeneralRecognition_PPLCNet_x2_5 | 83.9(83.2) | 88.7(60.1) | 86.1(73.6) | 84.1(72.3) | 79.7(58.6) | 89.1(69.4) |
| Models | Aliproduct | VeRI-Wild | LogoDet-3k | iCartoonFace | SOP | Inshop |
| :---------------------------------- | :-------------- | :-------------- | :-------------- | :-------------- | :-------------- | :--------------- |
| - | recall@1%(mAP%) | recall@1%(mAP%) | recall@1%(mAP%) | recall@1%(mAP%) | recall@1%(mAP%) | recall@ 1%(mAP%) |
| GeneralRecognition_PPLCNet_x2_5 | 83.9(83.2) | 88.7(60.1) | 86.1(73.6) | 84.1(72.3) | 79.7(58.6) | 89.1(69.4) |
| GeneralRecognitionV2_PPLCNetV2_base | 84.2(83.3) | 87.8(68.8) | 88.0(63.2) | 53.6(27.5) | 77.6(55.3) | 90.8(74.3) |
| model | gldv2 | imdb_face | iNat | instre | sketch | sop<sup>*</sup> |
| :--------- | :-------------- | :-------------- | :-------------- | :-------------- | :-------------- | :--------------- |
| - | recall@1%(mAP%) | recall@1%(mAP%) | recall@1%(mAP%) | recall@1%(mAP%) | recall@1%(mAP%) | recall@ 1%(mAP%) |
| GeneralRecognition_PPLCNet_x2_5 | 98.2(91.6) | 28.8(8.42) | 12.6(6.1) | 72.0(50.4) | 27.9(9.5) | 97.6(90.3) |
| model | gldv2 | imdb_face | iNat | instre | sketch | sop<sup>*</sup> |
| :---------------------------------- | :-------------- | :-------------- | :-------------- | :-------------- | :-------------- | :--------------- |
| - | recall@1%(mAP%) | recall@1%(mAP%) | recall@1%(mAP%) | recall@1%(mAP%) | recall@1%(mAP%) | recall@ 1%(mAP%) |
| GeneralRecognition_PPLCNet_x2_5 | 98.2(91.6) | 28.8(8.42) | 12.6(6.1) | 72.0(50.4) | 27.9(9.5) | 97.6(90.3) |
| GeneralRecognitionV2_PPLCNetV2_base | 98.1(90.5) | 35.9(11.2) | 38.6(23.9) | 87.7(71.4) | 39.3(15.6) | 98.3(90.9) |
**Note:** The product dataset is made to verify the generalization performance of PP-ShiTu, and all the data are not present in the training and testing sets. The data contains 7 categories ( cosmetics, landmarks, wine, watches, cars, sports shoes, beverages) and 250 sub-categories. When testing, use the labels of 250 small classes for testing; the sop dataset comes from [GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval](https://arxiv.org/abs/2111.13122), which can be regarded as " SOP" dataset.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册