未验证 提交 73ae41c4 编写于 作者: L littletomatodonkey 提交者: GitHub

Update train_with_DALI_en.md

上级 e165897c
......@@ -49,8 +49,14 @@ python -m paddle.distributed.launch \
## Train with FP16
On the basis of the above, using FP16 half-precision can further improve the training speed, just add fields in the start training command `AMP.use_pure_fp16=True`:
On the basis of the above, using FP16 half-precision can further improve the training speed, you can refer to the following command.
```shell
python tools/static/train.py -c configs/ResNet/ResNet50.yaml -o use_dali=True -o AMP.use_pure_fp16=True
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
export FLAGS_fraction_of_gpu_memory_to_use=0.8
python -m paddle.distributed.launch \
--gpus="0,1,2,3,4,5,6,7" \
tools/static/train.py \
-c configs/ResNet/ResNet50_fp16.yaml
```
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册