Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
7370866c
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7370866c
编写于
9月 09, 2020
作者:
littletomatodonkey
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix doc
上级
772a2ebd
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
12 addition
and
0 deletion
+12
-0
docs/en/models/HRNet_en.md
docs/en/models/HRNet_en.md
+3
-0
docs/en/models/Mobile_en.md
docs/en/models/Mobile_en.md
+3
-0
docs/zh_CN/models/HRNet.md
docs/zh_CN/models/HRNet.md
+3
-0
docs/zh_CN/models/Mobile.md
docs/zh_CN/models/Mobile.md
+3
-0
未找到文件。
docs/en/models/HRNet_en.md
浏览文件 @
7370866c
...
@@ -22,6 +22,7 @@ At present, there are 7 pretrained models of such models open-sourced by PaddleC
...
@@ -22,6 +22,7 @@ At present, there are 7 pretrained models of such models open-sourced by PaddleC
| Models | Top1 | Top5 | Reference
<br>
top1 | Reference
<br>
top5 | FLOPS
<br>
(G) | Parameters
<br>
(M) |
| Models | Top1 | Top5 | Reference
<br>
top1 | Reference
<br>
top5 | FLOPS
<br>
(G) | Parameters
<br>
(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| HRNet_W18_C | 0.769 | 0.934 | 0.768 | 0.934 | 4.140 | 21.290 |
| HRNet_W18_C | 0.769 | 0.934 | 0.768 | 0.934 | 4.140 | 21.290 |
| HRNet_W18_C_ssld | 0.816 | 0.958 | 0.768 | 0.934 | 4.140 | 21.290 |
| HRNet_W30_C | 0.780 | 0.940 | 0.782 | 0.942 | 16.230 | 37.710 |
| HRNet_W30_C | 0.780 | 0.940 | 0.782 | 0.942 | 16.230 | 37.710 |
| HRNet_W32_C | 0.783 | 0.942 | 0.785 | 0.942 | 17.860 | 41.230 |
| HRNet_W32_C | 0.783 | 0.942 | 0.785 | 0.942 | 17.860 | 41.230 |
| HRNet_W40_C | 0.788 | 0.945 | 0.789 | 0.945 | 25.410 | 57.550 |
| HRNet_W40_C | 0.788 | 0.945 | 0.789 | 0.945 | 25.410 | 57.550 |
...
@@ -35,6 +36,7 @@ At present, there are 7 pretrained models of such models open-sourced by PaddleC
...
@@ -35,6 +36,7 @@ At present, there are 7 pretrained models of such models open-sourced by PaddleC
| Models | Crop Size | Resize Short Size | FP32
<br>
Batch Size=1
<br>
(ms) |
| Models | Crop Size | Resize Short Size | FP32
<br>
Batch Size=1
<br>
(ms) |
|-------------|-----------|-------------------|--------------------------|
|-------------|-----------|-------------------|--------------------------|
| HRNet_W18_C | 224 | 256 | 7.368 |
| HRNet_W18_C | 224 | 256 | 7.368 |
| HRNet_W18_C_ssld | 224 | 256 | 7.368 |
| HRNet_W30_C | 224 | 256 | 9.402 |
| HRNet_W30_C | 224 | 256 | 9.402 |
| HRNet_W32_C | 224 | 256 | 9.467 |
| HRNet_W32_C | 224 | 256 | 9.467 |
| HRNet_W40_C | 224 | 256 | 10.739 |
| HRNet_W40_C | 224 | 256 | 10.739 |
...
@@ -50,6 +52,7 @@ At present, there are 7 pretrained models of such models open-sourced by PaddleC
...
@@ -50,6 +52,7 @@ At present, there are 7 pretrained models of such models open-sourced by PaddleC
| Models | Crop Size | Resize Short Size | FP16
<br>
Batch Size=1
<br>
(ms) | FP16
<br>
Batch Size=4
<br>
(ms) | FP16
<br>
Batch Size=8
<br>
(ms) | FP32
<br>
Batch Size=1
<br>
(ms) | FP32
<br>
Batch Size=4
<br>
(ms) | FP32
<br>
Batch Size=8
<br>
(ms) |
| Models | Crop Size | Resize Short Size | FP16
<br>
Batch Size=1
<br>
(ms) | FP16
<br>
Batch Size=4
<br>
(ms) | FP16
<br>
Batch Size=8
<br>
(ms) | FP32
<br>
Batch Size=1
<br>
(ms) | FP32
<br>
Batch Size=4
<br>
(ms) | FP32
<br>
Batch Size=8
<br>
(ms) |
|-------------|-----------|-------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
|-------------|-----------|-------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| HRNet_W18_C | 224 | 256 | 6.79093 | 11.50986 | 17.67244 | 7.40636 | 13.29752 | 23.33445 |
| HRNet_W18_C | 224 | 256 | 6.79093 | 11.50986 | 17.67244 | 7.40636 | 13.29752 | 23.33445 |
| HRNet_W18_C_ssld | 224 | 256 | 6.79093 | 11.50986 | 17.67244 | 7.40636 | 13.29752 | 23.33445 |
| HRNet_W30_C | 224 | 256 | 8.98077 | 14.08082 | 21.23527 | 9.57594 | 17.35485 | 32.6933 |
| HRNet_W30_C | 224 | 256 | 8.98077 | 14.08082 | 21.23527 | 9.57594 | 17.35485 | 32.6933 |
| HRNet_W32_C | 224 | 256 | 8.82415 | 14.21462 | 21.19804 | 9.49807 | 17.72921 | 32.96305 |
| HRNet_W32_C | 224 | 256 | 8.82415 | 14.21462 | 21.19804 | 9.49807 | 17.72921 | 32.96305 |
| HRNet_W40_C | 224 | 256 | 11.4229 | 19.1595 | 30.47984 | 12.12202 | 25.68184 | 48.90623 |
| HRNet_W40_C | 224 | 256 | 11.4229 | 19.1595 | 30.47984 | 12.12202 | 25.68184 | 48.90623 |
...
...
docs/en/models/Mobile_en.md
浏览文件 @
7370866c
...
@@ -48,6 +48,7 @@ Currently there are 32 pretrained models of the mobile series open source by Pad
...
@@ -48,6 +48,7 @@ Currently there are 32 pretrained models of the mobile series open source by Pad
| MobileNetV3_small_
<br>
x0_75 | 0.660 | 0.863 | 0.654 | | 0.088 | 2.370 |
| MobileNetV3_small_
<br>
x0_75 | 0.660 | 0.863 | 0.654 | | 0.088 | 2.370 |
| MobileNetV3_small_
<br>
x0_5 | 0.592 | 0.815 | 0.580 | | 0.043 | 1.900 |
| MobileNetV3_small_
<br>
x0_5 | 0.592 | 0.815 | 0.580 | | 0.043 | 1.900 |
| MobileNetV3_small_
<br>
x0_35 | 0.530 | 0.764 | 0.498 | | 0.026 | 1.660 |
| MobileNetV3_small_
<br>
x0_35 | 0.530 | 0.764 | 0.498 | | 0.026 | 1.660 |
| MobileNetV3_small_
<br>
x0_35_ssld | 0.556 | 0.777 | 0.498 | | 0.026 | 1.660 |
| MobileNetV3_large_
<br>
x1_0_ssld | 0.790 | 0.945 | | | 0.450 | 5.470 |
| MobileNetV3_large_
<br>
x1_0_ssld | 0.790 | 0.945 | | | 0.450 | 5.470 |
| MobileNetV3_large_
<br>
x1_0_ssld_int8 | 0.761 | | | | | |
| MobileNetV3_large_
<br>
x1_0_ssld_int8 | 0.761 | | | | | |
| MobileNetV3_small_
<br>
x1_0_ssld | 0.713 | 0.901 | | | 0.123 | 2.940 |
| MobileNetV3_small_
<br>
x1_0_ssld | 0.713 | 0.901 | | | 0.123 | 2.940 |
...
@@ -89,6 +90,7 @@ Currently there are 32 pretrained models of the mobile series open source by Pad
...
@@ -89,6 +90,7 @@ Currently there are 32 pretrained models of the mobile series open source by Pad
| MobileNetV3_small_x0_75 | 5.284 | 9.600 |
| MobileNetV3_small_x0_75 | 5.284 | 9.600 |
| MobileNetV3_small_x0_5 | 3.352 | 7.800 |
| MobileNetV3_small_x0_5 | 3.352 | 7.800 |
| MobileNetV3_small_x0_35 | 2.635 | 6.900 |
| MobileNetV3_small_x0_35 | 2.635 | 6.900 |
| MobileNetV3_small_x0_35_ssld | 2.635 | 6.900 |
| MobileNetV3_large_x1_0_ssld | 19.308 | 21.000 |
| MobileNetV3_large_x1_0_ssld | 19.308 | 21.000 |
| MobileNetV3_large_x1_0_ssld_int8 | 14.395 | 10.000 |
| MobileNetV3_large_x1_0_ssld_int8 | 14.395 | 10.000 |
| MobileNetV3_small_x1_0_ssld | 6.546 | 12.000 |
| MobileNetV3_small_x1_0_ssld | 6.546 | 12.000 |
...
@@ -130,6 +132,7 @@ Currently there are 32 pretrained models of the mobile series open source by Pad
...
@@ -130,6 +132,7 @@ Currently there are 32 pretrained models of the mobile series open source by Pad
| MobileNetV3_small_x0_75 | 1.80617 | 2.64646 | 3.24513 | 1.93697 | 2.64285 | 3.32797 |
| MobileNetV3_small_x0_75 | 1.80617 | 2.64646 | 3.24513 | 1.93697 | 2.64285 | 3.32797 |
| MobileNetV3_small_x0_5 | 1.95001 | 2.74014 | 3.39485 | 1.88406 | 2.99601 | 3.3908 |
| MobileNetV3_small_x0_5 | 1.95001 | 2.74014 | 3.39485 | 1.88406 | 2.99601 | 3.3908 |
| MobileNetV3_small_x0_35 | 2.10683 | 2.94267 | 3.44254 | 1.94427 | 2.94116 | 3.41082 |
| MobileNetV3_small_x0_35 | 2.10683 | 2.94267 | 3.44254 | 1.94427 | 2.94116 | 3.41082 |
| MobileNetV3_small_x0_35_ssld | 2.10683 | 2.94267 | 3.44254 | 1.94427 | 2.94116 | 3.41082 |
| MobileNetV3_large_x1_0_ssld | 2.20149 | 3.08423 | 4.07779 | 2.04296 | 2.9322 | 4.53184 |
| MobileNetV3_large_x1_0_ssld | 2.20149 | 3.08423 | 4.07779 | 2.04296 | 2.9322 | 4.53184 |
| MobileNetV3_small_x1_0_ssld | 1.73933 | 2.59478 | 3.40276 | 1.74527 | 2.63565 | 3.28124 |
| MobileNetV3_small_x1_0_ssld | 1.73933 | 2.59478 | 3.40276 | 1.74527 | 2.63565 | 3.28124 |
| ShuffleNetV2 | 1.95064 | 2.15928 | 2.97169 | 1.89436 | 2.26339 | 3.17615 |
| ShuffleNetV2 | 1.95064 | 2.15928 | 2.97169 | 1.89436 | 2.26339 | 3.17615 |
...
...
docs/zh_CN/models/HRNet.md
浏览文件 @
7370866c
...
@@ -21,6 +21,7 @@ HRNet是2019年由微软亚洲研究院提出的一种全新的神经网络,
...
@@ -21,6 +21,7 @@ HRNet是2019年由微软亚洲研究院提出的一种全新的神经网络,
| Models | Top1 | Top5 | Reference
<br>
top1 | Reference
<br>
top5 | FLOPS
<br>
(G) | Parameters
<br>
(M) |
| Models | Top1 | Top5 | Reference
<br>
top1 | Reference
<br>
top5 | FLOPS
<br>
(G) | Parameters
<br>
(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| HRNet_W18_C | 0.769 | 0.934 | 0.768 | 0.934 | 4.140 | 21.290 |
| HRNet_W18_C | 0.769 | 0.934 | 0.768 | 0.934 | 4.140 | 21.290 |
| HRNet_W18_C_ssld | 0.816 | 0.958 | 0.768 | 0.934 | 4.140 | 21.290 |
| HRNet_W30_C | 0.780 | 0.940 | 0.782 | 0.942 | 16.230 | 37.710 |
| HRNet_W30_C | 0.780 | 0.940 | 0.782 | 0.942 | 16.230 | 37.710 |
| HRNet_W32_C | 0.783 | 0.942 | 0.785 | 0.942 | 17.860 | 41.230 |
| HRNet_W32_C | 0.783 | 0.942 | 0.785 | 0.942 | 17.860 | 41.230 |
| HRNet_W40_C | 0.788 | 0.945 | 0.789 | 0.945 | 25.410 | 57.550 |
| HRNet_W40_C | 0.788 | 0.945 | 0.789 | 0.945 | 25.410 | 57.550 |
...
@@ -34,6 +35,7 @@ HRNet是2019年由微软亚洲研究院提出的一种全新的神经网络,
...
@@ -34,6 +35,7 @@ HRNet是2019年由微软亚洲研究院提出的一种全新的神经网络,
| Models | Crop Size | Resize Short Size | FP32
<br>
Batch Size=1
<br>
(ms) |
| Models | Crop Size | Resize Short Size | FP32
<br>
Batch Size=1
<br>
(ms) |
|-------------|-----------|-------------------|--------------------------|
|-------------|-----------|-------------------|--------------------------|
| HRNet_W18_C | 224 | 256 | 7.368 |
| HRNet_W18_C | 224 | 256 | 7.368 |
| HRNet_W18_C_ssld | 224 | 256 | 7.368 |
| HRNet_W30_C | 224 | 256 | 9.402 |
| HRNet_W30_C | 224 | 256 | 9.402 |
| HRNet_W32_C | 224 | 256 | 9.467 |
| HRNet_W32_C | 224 | 256 | 9.467 |
| HRNet_W40_C | 224 | 256 | 10.739 |
| HRNet_W40_C | 224 | 256 | 10.739 |
...
@@ -49,6 +51,7 @@ HRNet是2019年由微软亚洲研究院提出的一种全新的神经网络,
...
@@ -49,6 +51,7 @@ HRNet是2019年由微软亚洲研究院提出的一种全新的神经网络,
| Models | Crop Size | Resize Short Size | FP16
<br>
Batch Size=1
<br>
(ms) | FP16
<br>
Batch Size=4
<br>
(ms) | FP16
<br>
Batch Size=8
<br>
(ms) | FP32
<br>
Batch Size=1
<br>
(ms) | FP32
<br>
Batch Size=4
<br>
(ms) | FP32
<br>
Batch Size=8
<br>
(ms) |
| Models | Crop Size | Resize Short Size | FP16
<br>
Batch Size=1
<br>
(ms) | FP16
<br>
Batch Size=4
<br>
(ms) | FP16
<br>
Batch Size=8
<br>
(ms) | FP32
<br>
Batch Size=1
<br>
(ms) | FP32
<br>
Batch Size=4
<br>
(ms) | FP32
<br>
Batch Size=8
<br>
(ms) |
|-------------|-----------|-------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
|-------------|-----------|-------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| HRNet_W18_C | 224 | 256 | 6.79093 | 11.50986 | 17.67244 | 7.40636 | 13.29752 | 23.33445 |
| HRNet_W18_C | 224 | 256 | 6.79093 | 11.50986 | 17.67244 | 7.40636 | 13.29752 | 23.33445 |
| HRNet_W18_C_ssld | 224 | 256 | 6.79093 | 11.50986 | 17.67244 | 7.40636 | 13.29752 | 23.33445 |
| HRNet_W30_C | 224 | 256 | 8.98077 | 14.08082 | 21.23527 | 9.57594 | 17.35485 | 32.6933 |
| HRNet_W30_C | 224 | 256 | 8.98077 | 14.08082 | 21.23527 | 9.57594 | 17.35485 | 32.6933 |
| HRNet_W32_C | 224 | 256 | 8.82415 | 14.21462 | 21.19804 | 9.49807 | 17.72921 | 32.96305 |
| HRNet_W32_C | 224 | 256 | 8.82415 | 14.21462 | 21.19804 | 9.49807 | 17.72921 | 32.96305 |
| HRNet_W40_C | 224 | 256 | 11.4229 | 19.1595 | 30.47984 | 12.12202 | 25.68184 | 48.90623 |
| HRNet_W40_C | 224 | 256 | 11.4229 | 19.1595 | 30.47984 | 12.12202 | 25.68184 | 48.90623 |
...
...
docs/zh_CN/models/Mobile.md
浏览文件 @
7370866c
...
@@ -49,6 +49,7 @@ GhostNet是华为于2020年提出的一种全新的轻量化网络结构,通
...
@@ -49,6 +49,7 @@ GhostNet是华为于2020年提出的一种全新的轻量化网络结构,通
| MobileNetV3_small_
<br>
x0_75 | 0.660 | 0.863 | 0.654 | | 0.088 | 2.370 |
| MobileNetV3_small_
<br>
x0_75 | 0.660 | 0.863 | 0.654 | | 0.088 | 2.370 |
| MobileNetV3_small_
<br>
x0_5 | 0.592 | 0.815 | 0.580 | | 0.043 | 1.900 |
| MobileNetV3_small_
<br>
x0_5 | 0.592 | 0.815 | 0.580 | | 0.043 | 1.900 |
| MobileNetV3_small_
<br>
x0_35 | 0.530 | 0.764 | 0.498 | | 0.026 | 1.660 |
| MobileNetV3_small_
<br>
x0_35 | 0.530 | 0.764 | 0.498 | | 0.026 | 1.660 |
| MobileNetV3_small_
<br>
x0_35_ssld | 0.556 | 0.777 | 0.498 | | 0.026 | 1.660 |
| MobileNetV3_large_
<br>
x1_0_ssld | 0.790 | 0.945 | | | 0.450 | 5.470 |
| MobileNetV3_large_
<br>
x1_0_ssld | 0.790 | 0.945 | | | 0.450 | 5.470 |
| MobileNetV3_large_
<br>
x1_0_ssld_int8 | 0.761 | | | | | |
| MobileNetV3_large_
<br>
x1_0_ssld_int8 | 0.761 | | | | | |
| MobileNetV3_small_
<br>
x1_0_ssld | 0.713 | 0.901 | | | 0.123 | 2.940 |
| MobileNetV3_small_
<br>
x1_0_ssld | 0.713 | 0.901 | | | 0.123 | 2.940 |
...
@@ -90,6 +91,7 @@ GhostNet是华为于2020年提出的一种全新的轻量化网络结构,通
...
@@ -90,6 +91,7 @@ GhostNet是华为于2020年提出的一种全新的轻量化网络结构,通
| MobileNetV3_small_x0_75 | 5.284 | 9.600 |
| MobileNetV3_small_x0_75 | 5.284 | 9.600 |
| MobileNetV3_small_x0_5 | 3.352 | 7.800 |
| MobileNetV3_small_x0_5 | 3.352 | 7.800 |
| MobileNetV3_small_x0_35 | 2.635 | 6.900 |
| MobileNetV3_small_x0_35 | 2.635 | 6.900 |
| MobileNetV3_small_x0_35_ssld | 2.635 | 6.900 |
| MobileNetV3_large_x1_0_ssld | 19.308 | 21.000 |
| MobileNetV3_large_x1_0_ssld | 19.308 | 21.000 |
| MobileNetV3_large_x1_0_ssld_int8 | 14.395 | 10.000 |
| MobileNetV3_large_x1_0_ssld_int8 | 14.395 | 10.000 |
| MobileNetV3_small_x1_0_ssld | 6.546 | 12.000 |
| MobileNetV3_small_x1_0_ssld | 6.546 | 12.000 |
...
@@ -131,6 +133,7 @@ GhostNet是华为于2020年提出的一种全新的轻量化网络结构,通
...
@@ -131,6 +133,7 @@ GhostNet是华为于2020年提出的一种全新的轻量化网络结构,通
| MobileNetV3_small_x0_75 | 1.80617 | 2.64646 | 3.24513 | 1.93697 | 2.64285 | 3.32797 |
| MobileNetV3_small_x0_75 | 1.80617 | 2.64646 | 3.24513 | 1.93697 | 2.64285 | 3.32797 |
| MobileNetV3_small_x0_5 | 1.95001 | 2.74014 | 3.39485 | 1.88406 | 2.99601 | 3.3908 |
| MobileNetV3_small_x0_5 | 1.95001 | 2.74014 | 3.39485 | 1.88406 | 2.99601 | 3.3908 |
| MobileNetV3_small_x0_35 | 2.10683 | 2.94267 | 3.44254 | 1.94427 | 2.94116 | 3.41082 |
| MobileNetV3_small_x0_35 | 2.10683 | 2.94267 | 3.44254 | 1.94427 | 2.94116 | 3.41082 |
| MobileNetV3_small_x0_35_ssld | 2.10683 | 2.94267 | 3.44254 | 1.94427 | 2.94116 | 3.41082 |
| MobileNetV3_large_x1_0_ssld | 2.20149 | 3.08423 | 4.07779 | 2.04296 | 2.9322 | 4.53184 |
| MobileNetV3_large_x1_0_ssld | 2.20149 | 3.08423 | 4.07779 | 2.04296 | 2.9322 | 4.53184 |
| MobileNetV3_small_x1_0_ssld | 1.73933 | 2.59478 | 3.40276 | 1.74527 | 2.63565 | 3.28124 |
| MobileNetV3_small_x1_0_ssld | 1.73933 | 2.59478 | 3.40276 | 1.74527 | 2.63565 | 3.28124 |
| ShuffleNetV2 | 1.95064 | 2.15928 | 2.97169 | 1.89436 | 2.26339 | 3.17615 |
| ShuffleNetV2 | 1.95064 | 2.15928 | 2.97169 | 1.89436 | 2.26339 | 3.17615 |
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录