提交 70bf9751 编写于 作者: littletomatodonkey's avatar littletomatodonkey

add quick start

上级 72402bc4
mode: 'train'
architecture: 'ResNet50_vd'
pretrained_model:
model_save_dir: "./output/"
classes_num: 102
total_images: 1020
save_interval: 10
validate: True
valid_interval: 1
epochs: 40
topk: 5
image_shape: [3, 224, 224]
ls_epsilon: 0.1
LEARNING_RATE:
function: 'Cosine'
params:
lr: 0.00375
OPTIMIZER:
function: 'Momentum'
params:
momentum: 0.9
regularizer:
function: 'L2'
factor: 0.000001
TRAIN:
batch_size: 32
num_workers: 1
file_list: "./dataset/flower102/train_list.txt"
data_dir: "./dataset/flower102"
shuffle_seed: 0
transforms:
- DecodeImage:
to_rgb: True
to_np: False
channel_first: False
- RandCropImage:
size: 224
- RandFlipImage:
flip_code: 1
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
#mix:
# - MixupOperator:
# alpha: 0.2
VALID:
batch_size: 64
num_workers: 1
file_list: "./dataset/flower102/val_list.txt"
data_dir: "./dataset/flower102/"
shuffle_seed: 0
transforms:
- DecodeImage:
to_rgb: True
to_np: False
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
......@@ -5,6 +5,7 @@
:maxdepth: 1
install.md
quick_start.md
getting_started.md
config.md
data.md
# 30min玩转PaddleClas
请事先参考[安装指南](install.md)配置运行环境
## 一、代码和数据准备
* 克隆代码到本地并进入PaddleClas目录。
```
git clone https://github.com/PaddlePaddle/PaddleClas.git
cd PaddleClas
```
* 进入`dataset/flowers102`目录,下载并解压flowers102数据集.
```shell
cd dataset/flowers102
wget https://www.robots.ox.ac.uk/~vgg/data/flowers/102/102flowers.tgz
wget https://www.robots.ox.ac.uk/~vgg/data/flowers/102/imagelabels.mat
wget https://www.robots.ox.ac.uk/~vgg/data/flowers/102/setid.ma
tar -xf 102flowers.tgz
```
* 制作train/val/test list
```shell
python generate_flowers102_list.py jpg train > train_list.txt
python generate_flowers102_list.py jpg valid > val_list.txt
python generate_flowers102_list.py jpg test > test_list.txt
cat train_list.txt test_list.txt > train_test.txt
```
**注意**:这里将train_list.txt和test_list.txt合并成train_test.txt,是为了之后在进行知识蒸馏时,使用更多的数据提升无标签知识蒸馏任务的效果。
* 返回`PaddleClas`根目录
```
cd ../../
```
## 二、环境准备
### 2.1 设置PYTHONPATH环境变量
```bash
export PYTHONPATH=path_to_PaddleClas:$PYTHONPATH
```
### 2.2 环境说明
* 为了保证对比的公平性,下面所有的训练过程均在`单卡V100`机器上实现。
## 三、模型训练
### 3.1 零基础训练:不加载预训练模型的训练
* 基于ResNet50_vd模型,训练脚本如下所示。
```shell
export CUDA_VISIBLE_DEVICES=0
python -m paddle.distributed.launch  
    --selected_gpus="0"  
    --log_dir=log_train  
    tools/train.py  
        -c ./configs/quick_start/ResNet50_vd.yaml
```
最终`Loss`曲线如下所示。
![](../../images/quick_start/r50_vd_loss.png)
`Top1 Acc`曲线如下所示。
![](../../images/quick_start/r50_vd_acc.png)
### 3.2 基于精度为79.12\%的ImageNet预训练模型微调
```shell
export CUDA_VISIBLE_DEVICES=0
python -m paddle.distributed.launch  
    --selected_gpus="0"  
    --log_dir=log_train  
    tools/train.py  
        -c ./configs/quick_start/ResNet50_vd.yaml
```
最终`Loss`曲线如下所示。
![](../../images/quick_start/r50_vd_pretrained_loss.png)
`Top1 Acc`曲线如下所示。
![](../../images/quick_start/r50_vd_pretrained_acc.png)
### 3.3 基于精度82.39\%的ImageNet预训练模型微调
需要注意的是,在使用通过知识蒸馏得到的预训练模型进行微调时,我们推荐使用相对较小的网络中间层学习率。
```yaml
ARCHITECTURE:
name: 'ResNet50_vd'
params:
lr_mult_list: [0.1, 0.1, 0.2, 0.2, 0.3]
pretrained_model: "./pretrained/ResNet50_vd_ssld_pretrained"
```
最终的训练脚本所示。
```shell
export CUDA_VISIBLE_DEVICES=0
python -m paddle.distributed.launch  
    --selected_gpus="0"  
    --log_dir=log_train  
    tools/train.py  
        -c ./configs/quick_start/ResNet50_vd_ssld_finetune.yaml
```
### 3.4 使用ResNet50_vd蒸馏MobileNetV3
* 使用flowers102数据集进行模型蒸馏,为了进一步提提升模型的精度,使用test_list.txt充当无标签数据,在这里有三点需要注意:
* `test_list.txt``val_list.txt`的样本没有重复。
* 即使引入了有标签的test_list.txt中的测试集图像,但是代码中没有使用标签信息,因此仍然可以视为无标签的模型蒸馏。
* 蒸馏过程中,教师模型使用的预训练模型为flowers102数据集上的训练结果,学生模型使用的是ImageNet1k数据集上精度为75.32\%的MobileNetV3_large_x1_0预训练模型。
* 首先需要保存之前训练得到的ResNet50_vd预训练模型到合适的位置,作教师模型的预训练。
脚本如下所示。
```shell
cp -r output/ResNet50_vd/19/ ./pretrained/flowers102_R50_vd_final/
```
配置文件中数据数量、模型结构、预训练地址以及训练的数据配置如下:
```yaml
total_images: 7169
ARCHITECTURE:
name: 'ResNet50_vd_distill_MobileNetV3_large_x1_0'
pretrained_model:
- "./pretrained/flowers102_R50_vd_final/ppcls"
- "./pretrained/MobileNetV3_large_x1_0_pretrained/”
TRAIN:
file_list: "./dataset/flowers102/train_test_list.txt"
```
最终的训练脚本如下所示。
```shell
export CUDA_VISIBLE_DEVICES=0
python -m paddle.distributed.launch  
    --selected_gpus="0"  
    --log_dir=log_train  
    tools/train.py  
        -c ./configs/quick_start/R50_vd_distill_MV3_large_x1_0.yaml
```
### 3.5 其他模型
* 如果希望尝试更多的模型结构,可以很方便地修改模型名称,下面给出了使用MobileNetV3模型训练的命令。
```shell
export CUDA_VISIBLE_DEVICES=0
python -m paddle.distributed.launch  
    --selected_gpus="0"  
    --log_dir=log_train  
    tools/train.py  
        -c ./configs/quick_start/MobileNetV3_large_x1_0_finetune.yaml
```
* 如果希望尝试增广方式,可以通过以下命令提供体验RandomErasing数据增广的训练效果。
```shell
export CUDA_VISIBLE_DEVICES=0
python -m paddle.distributed.launch  
    --selected_gpus="0"  
    --log_dir=log_train  
    tools/train.py  
        -c ./configs/quick_start/ResNet50_vd_ssld_random_erasing_finetune.yaml
```
### 3.6 精度一览
* 下表给出了不同训练yaml文件对应的精度。
|配置文件 | Top1 Acc |
|- |:-: |
| ResNet50_vd.yaml | 0.2735 |
| MobileNetV3_large_x1_0_finetune.yaml | 0.9000 |
| ResNet50_vd_finetune.yaml | 0.9402 |
| ResNet50_vd_ssld_finetune.yaml | 0.9500 |
| ResNet50_vd_ssld_random_erasing_finetune.yaml | 0.9627 |
| R50_vd_distill_MV3_large_x1_0.yaml | 0.9647 |
下图给出了不同配置文件的`Loss``Top1 Acc`的精度对比。
![](../../images/quick_start/all_loss.png)
`Top1 Acc`曲线如下所示。
![](../../images/quick_start/all_acc.png)
### 3.7 总结
* 对于新数据集,更推荐通过加载预训练模型进行微调的方式进行训练,以在新的数据集上获得更高的精度,减少收敛时间。
* 预训练模型
* 不同模型结构的网络在相同数据集上的性能表现不同,需要根据预测耗时以及存储的需求选择合适的模型。
* 数据增广在小数据集的训练中可以进一步提升模型精度。PaddleClas中也提供了8种数据增广方式,您也开业
* 无标签数据的知识蒸馏可以大幅提升学生模型的精度,甚至超越教师模型。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册