未验证 提交 6d22322a 编写于 作者: jm_12138's avatar jm_12138 提交者: GitHub

Update the Configs of ViT and DeiT models (#593)

* update configs of ViT and DeiT

* update readme of DeiT models

* update readme of DeiT models

* update readme of DeiT models

* update README of ViT models
上级 378ed960
......@@ -7,7 +7,7 @@
PaddleClas is a toolset for image classification tasks prepared for the industry and academia. It helps users train better computer vision models and apply them in real scenarios.
**Recent update**
- 2021.01.27 Add `ViT` and `DeiT` pretrained model, `ViT`'s Top-1 Acc on ImageNet-1k dataset reaches 81.05%, and `DeiT` reaches 85.5%.
- 2021.01.27 Add `ViT` and `DeiT` pretrained model, `ViT`'s Top-1 Acc on ImageNet-1k dataset reaches 85.13%, and `DeiT` reaches 85.1%.
- 2021.01.08 Add support for whl package and its usage, Model inference can be done by simply install paddleclas using pip.
- 2020.12.16 Add support for TensorRT when using cpp inference to obain more obvious acceleration.
- 2020.12.06 Add `SE_HRNet_W64_C_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 84.75%.
......@@ -361,26 +361,26 @@ Accuracy and inference time metrics of ViT and DeiT series models are shown as f
| Model | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address |
|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|
| ViT_small_<br/>patch16_224 | 0.7727 | 0.9319 | - | - | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_small_patch16_224_pretrained.pdparams) |
| ViT_base_<br/>patch16_224 | 0.8176 | 0.9613 | - | - | | 86 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_224_pretrained.pdparams) |
| ViT_base_<br/>patch16_384 | 0.8393 | 0.9710 | - | - | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_384_pretrained.pdparams) |
| ViT_base_<br/>patch32_384 | 0.8124 | 0.9598 | - | - | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch32_384_pretrained.pdparams) |
| ViT_large_<br/>patch16_224 | 0.8325 | 0.9658 | - | - | | 307 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_224_pretrained.pdparams) |
| ViT_large_<br/>patch16_384 | 0.8507 | 0.9741 | - | - | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_384_pretrained.pdparams) |
| ViT_large_<br/>patch32_384 | 0.8105 | 0.9596 | - | - | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch32_384_pretrained.pdparams) |
| ViT_small_<br/>patch16_224 | 0.7769 | 0.9342 | - | - | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_small_patch16_224_pretrained.pdparams) |
| ViT_base_<br/>patch16_224 | 0.8195 | 0.9617 | - | - | | 86 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_224_pretrained.pdparams) |
| ViT_base_<br/>patch16_384 | 0.8414 | 0.9717 | - | - | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_384_pretrained.pdparams) |
| ViT_base_<br/>patch32_384 | 0.8176 | 0.9613 | - | - | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch32_384_pretrained.pdparams) |
| ViT_large_<br/>patch16_224 | 0.8323 | 0.9650 | - | - | | 307 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_224_pretrained.pdparams) |
| ViT_large_<br/>patch16_384 | 0.8513 | 0.9736 | - | - | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_384_pretrained.pdparams) |
| ViT_large_<br/>patch32_384 | 0.8153 | 0.9608 | - | - | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch32_384_pretrained.pdparams) |
| | | | | | | | |
| Model | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address |
|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|
| DeiT_tiny_<br>patch16_224 | 0.709 | 0.906 | - | - | | 5 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_patch16_224_pretrained.pdparams) |
| DeiT_small_<br>patch16_224 | 0.794 | 0.948 | - | - | | 22 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_patch16_224_pretrained.pdparams) |
| DeiT_base_<br>patch16_224 | 0.816 | 0.955 | - | - | | 86 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_224_pretrained.pdparams) |
| DeiT_base_<br>patch16_384 | 0.831 | 0.962 | - | - | | 87 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_384_pretrained.pdparams) |
| DeiT_tiny_<br>distilled_patch16_224 | 0.736 | 0.915 | - | - | | 6 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_distilled_patch16_224_pretrained.pdparams) |
| DeiT_small_<br>distilled_patch16_224 | 0.810 | 0.953 | - | - | | 22 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_distilled_patch16_224_pretrained.pdparams) |
| DeiT_base_<br>distilled_patch16_224 | 0.830 | 0.963 | - | - | | 87 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_224_pretrained.pdparams) |
| DeiT_base_<br>distilled_patch16_384 | 0.855 | 0.974 | - | - | | 88 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_384_pretrained.pdparams) |
| DeiT_tiny_<br>patch16_224 | 0.718 | 0.910 | - | - | | 5 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_patch16_224_pretrained.pdparams) |
| DeiT_small_<br>patch16_224 | 0.796 | 0.949 | - | - | | 22 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_patch16_224_pretrained.pdparams) |
| DeiT_base_<br>patch16_224 | 0.817 | 0.957 | - | - | | 86 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_224_pretrained.pdparams) |
| DeiT_base_<br>patch16_384 | 0.830 | 0.962 | - | - | | 87 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_384_pretrained.pdparams) |
| DeiT_tiny_<br>distilled_patch16_224 | 0.741 | 0.918 | - | - | | 6 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_distilled_patch16_224_pretrained.pdparams) |
| DeiT_small_<br>distilled_patch16_224 | 0.809 | 0.953 | - | - | | 22 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_distilled_patch16_224_pretrained.pdparams) |
| DeiT_base_<br>distilled_patch16_224 | 0.831 | 0.964 | - | - | | 87 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_224_pretrained.pdparams) |
| DeiT_base_<br>distilled_patch16_384 | 0.851 | 0.973 | - | - | | 88 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_384_pretrained.pdparams) |
| | | | | | | | |
......
......@@ -8,7 +8,7 @@
**近期更新**
- 2021.01.27 添加`ViT``DeiT`模型,在ImageNet-1k上,`ViT`模型Top-1 Acc可达81.05%,`DeiT`模型可达85.5%。
- 2021.01.27 添加`ViT``DeiT`模型,在ImageNet-1k上,`ViT`模型Top-1 Acc可达85.13%,`DeiT`模型可达85.1%。
- 2021.01.08 添加whl包及其使用说明,直接安装paddleclas whl包,即可快速完成模型预测。
- 2020.12.16 添加对cpp预测的tensorRT支持,预测加速更明显。
- 2020.12.06 添加`SE_HRNet_W64_C_ssld`模型,在ImageNet-1k上Top-1 Acc可达84.75%。
......@@ -363,26 +363,26 @@ ViT(Vision Transformer)与DeiT(Data-efficient Image Transformers)系列
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | 下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|
| ViT_small_<br/>patch16_224 | 0.7727 | 0.9319 | - | - | | | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_small_patch16_224_pretrained.pdparams) |
| ViT_base_<br/>patch16_224 | 0.8176 | 0.9613 | - | - | | 86 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_224_pretrained.pdparams) |
| ViT_base_<br/>patch16_384 | 0.8393 | 0.9710 | - | - | | | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_384_pretrained.pdparams) |
| ViT_base_<br/>patch32_384 | 0.8124 | 0.9598 | - | - | | | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch32_384_pretrained.pdparams) |
| ViT_large_<br/>patch16_224 | 0.8325 | 0.9658 | - | - | | 307 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_224_pretrained.pdparams) |
| ViT_large_<br/>patch16_384 | 0.8507 | 0.9741 | - | - | | | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_384_pretrained.pdparams) |
| ViT_large_<br/>patch32_384 | 0.8105 | 0.9596 | - | - | | | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch32_384_pretrained.pdparams) |
| ViT_small_<br/>patch16_224 | 0.7769 | 0.9342 | - | - | | | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_small_patch16_224_pretrained.pdparams) |
| ViT_base_<br/>patch16_224 | 0.8195 | 0.9617 | - | - | | 86 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_224_pretrained.pdparams) |
| ViT_base_<br/>patch16_384 | 0.8414 | 0.9717 | - | - | | | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_384_pretrained.pdparams) |
| ViT_base_<br/>patch32_384 | 0.8176 | 0.9613 | - | - | | | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch32_384_pretrained.pdparams) |
| ViT_large_<br/>patch16_224 | 0.8323 | 0.9650 | - | - | | 307 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_224_pretrained.pdparams) |
| ViT_large_<br/>patch16_384 | 0.8513 | 0.9736 | - | - | | | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_384_pretrained.pdparams) |
| ViT_large_<br/>patch32_384 | 0.8153 | 0.9608 | - | - | | | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch32_384_pretrained.pdparams) |
| | | | | | | | |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | 下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|
| DeiT_tiny_<br>patch16_224 | 0.709 | 0.906 | - | - | | 5 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_patch16_224_pretrained.pdparams) |
| DeiT_small_<br>patch16_224 | 0.794 | 0.948 | - | - | | 22 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_patch16_224_pretrained.pdparams) |
| DeiT_base_<br>patch16_224 | 0.816 | 0.955 | - | - | | 86 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_224_pretrained.pdparams) |
| DeiT_base_<br>patch16_384 | 0.831 | 0.962 | - | - | | 87 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_384_pretrained.pdparams) |
| DeiT_tiny_<br>distilled_patch16_224 | 0.736 | 0.915 | - | - | | 6 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_distilled_patch16_224_pretrained.pdparams) |
| DeiT_small_<br>distilled_patch16_224 | 0.810 | 0.953 | - | - | | 22 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_distilled_patch16_224_pretrained.pdparams) |
| DeiT_base_<br>distilled_patch16_224 | 0.830 | 0.963 | - | - | | 87 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_224_pretrained.pdparams) |
| DeiT_base_<br>distilled_patch16_384 | 0.855 | 0.974 | - | - | | 88 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_384_pretrained.pdparams) |
| DeiT_tiny_<br>patch16_224 | 0.718 | 0.910 | - | - | | 5 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_patch16_224_pretrained.pdparams) |
| DeiT_small_<br>patch16_224 | 0.796 | 0.949 | - | - | | 22 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_patch16_224_pretrained.pdparams) |
| DeiT_base_<br>patch16_224 | 0.817 | 0.957 | - | - | | 86 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_224_pretrained.pdparams) |
| DeiT_base_<br>patch16_384 | 0.830 | 0.962 | - | - | | 87 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_384_pretrained.pdparams) |
| DeiT_tiny_<br>distilled_patch16_224 | 0.741 | 0.918 | - | - | | 6 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_distilled_patch16_224_pretrained.pdparams) |
| DeiT_small_<br>distilled_patch16_224 | 0.809 | 0.953 | - | - | | 22 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_distilled_patch16_224_pretrained.pdparams) |
| DeiT_base_<br>distilled_patch16_224 | 0.831 | 0.964 | - | - | | 87 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_224_pretrained.pdparams) |
| DeiT_base_<br>distilled_patch16_384 | 0.851 | 0.973 | - | - | | 88 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_384_pretrained.pdparams) |
| | | | | | | | |
......
......@@ -63,7 +63,7 @@ VALID:
to_np: False
channel_first: False
- ResizeImage:
size: 248
resize_short: 248
- CropImage:
size: 224
- NormalizeImage:
......
......@@ -63,7 +63,7 @@ VALID:
to_np: False
channel_first: False
- ResizeImage:
size: 426
resize_short: 426
- CropImage:
size: 384
- NormalizeImage:
......
......@@ -63,7 +63,7 @@ VALID:
to_np: False
channel_first: False
- ResizeImage:
size: 248
resize_short: 248
- CropImage:
size: 224
- NormalizeImage:
......
......@@ -63,7 +63,7 @@ VALID:
to_np: False
channel_first: False
- ResizeImage:
size: 426
resize_short: 426
- CropImage:
size: 384
- NormalizeImage:
......
......@@ -63,7 +63,7 @@ VALID:
to_np: False
channel_first: False
- ResizeImage:
size: 248
resize_short: 248
- CropImage:
size: 224
- NormalizeImage:
......
......@@ -63,7 +63,7 @@ VALID:
to_np: False
channel_first: False
- ResizeImage:
size: 248
resize_short: 248
- CropImage:
size: 224
- NormalizeImage:
......
......@@ -63,7 +63,7 @@ VALID:
to_np: False
channel_first: False
- ResizeImage:
size: 248
resize_short: 248
- CropImage:
size: 224
- NormalizeImage:
......
......@@ -63,7 +63,7 @@ VALID:
to_np: False
channel_first: False
- ResizeImage:
size: 248
resize_short: 248
- CropImage:
size: 224
- NormalizeImage:
......
......@@ -63,7 +63,7 @@ VALID:
to_np: False
channel_first: False
- ResizeImage:
size: 248
resize_short: 248
- CropImage:
size: 224
- NormalizeImage:
......
......@@ -63,7 +63,7 @@ VALID:
to_np: False
channel_first: False
- ResizeImage:
size: 384
resize_short: 384
- CropImage:
size: 384
- NormalizeImage:
......
......@@ -63,7 +63,7 @@ VALID:
to_np: False
channel_first: False
- ResizeImage:
size: 384
resize_short: 384
- CropImage:
size: 384
- NormalizeImage:
......
......@@ -63,7 +63,7 @@ VALID:
to_np: False
channel_first: False
- ResizeImage:
size: 248
resize_short: 248
- CropImage:
size: 224
- NormalizeImage:
......
......@@ -63,7 +63,7 @@ VALID:
to_np: False
channel_first: False
- ResizeImage:
size: 384
resize_short: 384
- CropImage:
size: 384
- NormalizeImage:
......
......@@ -63,7 +63,7 @@ VALID:
to_np: False
channel_first: False
- ResizeImage:
size: 248
resize_short: 248
- CropImage:
size: 224
- NormalizeImage:
......
......@@ -63,7 +63,7 @@ VALID:
to_np: False
channel_first: False
- ResizeImage:
size: 384
resize_short: 384
- CropImage:
size: 384
- NormalizeImage:
......
......@@ -63,7 +63,7 @@ VALID:
to_np: False
channel_first: False
- ResizeImage:
size: 384
resize_short: 384
- CropImage:
size: 384
- NormalizeImage:
......
......@@ -63,7 +63,7 @@ VALID:
to_np: False
channel_first: False
- ResizeImage:
size: 248
resize_short: 248
- CropImage:
size: 224
- NormalizeImage:
......
......@@ -11,27 +11,25 @@ DeiT(Data-efficient Image Transformers) series models were proposed by Facebook
| Models | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPS<br>(G) |
|:--:|:--:|:--:|:--:|:--:|:--:|
| ViT_small_patch16_224 | 0.7727 | 0.9319 | 0.7785 | 0.9342 | |
| ViT_base_patch16_224 | 0.8176 | 0.9613 | 0.8178 | 0.9613 | |
| ViT_base_patch16_384 | 0.8393 | 0.9710 | 0.8420 | 0.9722 | |
| ViT_base_patch32_384 | 0.8124 | 0.9598 | 0.8166 | 0.9613 | |
| ViT_large_patch16_224 | 0.8325 | 0.9658 | 0.8306 | 0.9644 | |
| ViT_large_patch16_384 | 0.8507 | 0.9741 | 0.8517 | 0.9736 | |
| ViT_large_patch32_384 | 0.8105 | 0.9596 | 0.815 | - | |
| | | | | | |
| ViT_small_patch16_224 | 0.7769 | 0.9342 | 0.7785 | 0.9342 | |
| ViT_base_patch16_224 | 0.8195 | 0.9617 | 0.8178 | 0.9613 | |
| ViT_base_patch16_384 | 0.8414 | 0.9717 | 0.8420 | 0.9722 | |
| ViT_base_patch32_384 | 0.8176 | 0.9613 | 0.8166 | 0.9613 | |
| ViT_large_patch16_224 | 0.8323 | 0.9650 | 0.8306 | 0.9644 | |
| ViT_large_patch16_384 | 0.8513 | 0.9736 | 0.8517 | 0.9736 | |
| ViT_large_patch32_384 | 0.8153 | 0.9608 | 0.815 | - | |
| Models | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPS<br>(G) |
|:--:|:--:|:--:|:--:|:--:|:--:|
| DeiT_tiny_patch16_224 | 0.709 | 0.906 | 0.722 | 0.911 | |
| DeiT_small_patch16_224 | 0.794 | 0.948 | 0.799 | 0.950 | |
| DeiT_base_patch16_224 | 0.816 | 0.955 | 0.818 | 0.956 | |
| DeiT_base_patch16_384 | 0.831 | 0.962 | 0.829 | 0.972 | |
| DeiT_tiny_distilled_patch16_224 | 0.736 | 0.915 | 0.745 | 0.919 | |
| DeiT_small_distilled_patch16_224 | 0.810 | 0.953 | 0.812 | 0.954 | |
| DeiT_base_distilled_patch16_224 | 0.830 | 0.963 | 0.834 | 0.965 | |
| DeiT_base_distilled_patch16_384 | 0.855 | 0.974 | 0.852 | 0.972 | |
| | | | | | |
| DeiT_tiny_patch16_224 | 0.718 | 0.910 | 0.722 | 0.911 | |
| DeiT_small_patch16_224 | 0.796 | 0.949 | 0.799 | 0.950 | |
| DeiT_base_patch16_224 | 0.817 | 0.957 | 0.818 | 0.956 | |
| DeiT_base_patch16_384 | 0.830 | 0.962 | 0.829 | 0.972 | |
| DeiT_tiny_distilled_patch16_224 | 0.741 | 0.918 | 0.745 | 0.919 | |
| DeiT_small_distilled_patch16_224 | 0.809 | 0.953 | 0.812 | 0.954 | |
| DeiT_base_distilled_patch16_224 | 0.831 | 0.964 | 0.834 | 0.965 | |
| DeiT_base_distilled_patch16_384 | 0.851 | 0.973 | 0.852 | 0.972 | |
Params, FLOPs, Inference speed and other information are coming soon.
......@@ -13,26 +13,24 @@ DeiT(Data-efficient Image Transformers)系列模型是由FaceBook在2020年
| Models | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPS<br>(G) |
|:--:|:--:|:--:|:--:|:--:|:--:|
| ViT_small_patch16_224 | 0.7727 | 0.9319 | 0.7785 | 0.9342 | |
| ViT_base_patch16_224 | 0.8176 | 0.9613 | 0.8178 | 0.9613 | |
| ViT_base_patch16_384 | 0.8393 | 0.9710 | 0.8420 | 0.9722 | |
| ViT_base_patch32_384 | 0.8124 | 0.9598 | 0.8166 | 0.9613 | |
| ViT_large_patch16_224 | 0.8325 | 0.9658 | 0.8306 | 0.9644 | |
| ViT_large_patch16_384 | 0.8507 | 0.9741 | 0.8517 | 0.9736 | |
| ViT_large_patch32_384 | 0.8105 | 0.9596 | 0.815 | - | |
| | | | | | |
| ViT_small_patch16_224 | 0.7769 | 0.9342 | 0.7785 | 0.9342 | |
| ViT_base_patch16_224 | 0.8195 | 0.9617 | 0.8178 | 0.9613 | |
| ViT_base_patch16_384 | 0.8414 | 0.9717 | 0.8420 | 0.9722 | |
| ViT_base_patch32_384 | 0.8176 | 0.9613 | 0.8166 | 0.9613 | |
| ViT_large_patch16_224 | 0.8323 | 0.9650 | 0.8306 | 0.9644 | |
| ViT_large_patch16_384 | 0.8513 | 0.9736 | 0.8517 | 0.9736 | |
| ViT_large_patch32_384 | 0.8153 | 0.9608 | 0.815 | - | |
| Models | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPS<br>(G) |
|:--:|:--:|:--:|:--:|:--:|:--:|
| DeiT_tiny_patch16_224 | 0.709 | 0.906 | 0.722 | 0.911 | |
| DeiT_small_patch16_224 | 0.794 | 0.948 | 0.799 | 0.950 | |
| DeiT_base_patch16_224 | 0.816 | 0.955 | 0.818 | 0.956 | |
| DeiT_base_patch16_384 | 0.831 | 0.962 | 0.829 | 0.972 | |
| DeiT_tiny_distilled_patch16_224 | 0.736 | 0.915 | 0.745 | 0.919 | |
| DeiT_small_distilled_patch16_224 | 0.810 | 0.953 | 0.812 | 0.954 | |
| DeiT_base_distilled_patch16_224 | 0.830 | 0.963 | 0.834 | 0.965 | |
| DeiT_base_distilled_patch16_384 | 0.855 | 0.974 | 0.852 | 0.972 | |
| | | | | | |
| DeiT_tiny_patch16_224 | 0.718 | 0.910 | 0.722 | 0.911 | |
| DeiT_small_patch16_224 | 0.796 | 0.949 | 0.799 | 0.950 | |
| DeiT_base_patch16_224 | 0.817 | 0.957 | 0.818 | 0.956 | |
| DeiT_base_patch16_384 | 0.830 | 0.962 | 0.829 | 0.972 | |
| DeiT_tiny_distilled_patch16_224 | 0.741 | 0.918 | 0.745 | 0.919 | |
| DeiT_small_distilled_patch16_224 | 0.809 | 0.953 | 0.812 | 0.954 | |
| DeiT_base_distilled_patch16_224 | 0.831 | 0.964 | 0.834 | 0.965 | |
| DeiT_base_distilled_patch16_384 | 0.851 | 0.973 | 0.852 | 0.972 | |
关于Params、FLOPs、Inference speed等信息,敬请期待。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册