提交 6a0dce8a 编写于 作者: littletomatodonkey's avatar littletomatodonkey

support label smooth for dyg

上级 be35b7cc
...@@ -13,3 +13,4 @@ ...@@ -13,3 +13,4 @@
# limitations under the License. # limitations under the License.
from .resnet_name import * from .resnet_name import *
from .dpn import DPN68
...@@ -408,4 +408,4 @@ def DPN107(): ...@@ -408,4 +408,4 @@ def DPN107():
def DPN131(): def DPN131():
model = DPN(layers=131) model = DPN(layers=131)
return model return model
\ No newline at end of file
...@@ -51,9 +51,7 @@ def create_dataloader(): ...@@ -51,9 +51,7 @@ def create_dataloader():
trainer_num = int(os.environ.get('PADDLE_TRAINERS_NUM', 1)) trainer_num = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
capacity = 64 if trainer_num <= 1 else 8 capacity = 64 if trainer_num <= 1 else 8
dataloader = fluid.io.DataLoader.from_generator( dataloader = fluid.io.DataLoader.from_generator(
capacity=capacity, capacity=capacity, use_double_buffer=True, iterable=True)
use_double_buffer=True,
iterable=True)
return dataloader return dataloader
...@@ -76,8 +74,8 @@ def create_model(architecture, classes_num): ...@@ -76,8 +74,8 @@ def create_model(architecture, classes_num):
return architectures.__dict__[name](class_dim=classes_num, **params) return architectures.__dict__[name](class_dim=classes_num, **params)
def create_loss(out, def create_loss(feeds,
label, out,
architecture, architecture,
classes_num=1000, classes_num=1000,
epsilon=None, epsilon=None,
...@@ -106,7 +104,7 @@ def create_loss(out, ...@@ -106,7 +104,7 @@ def create_loss(out,
if architecture["name"] == "GoogLeNet": if architecture["name"] == "GoogLeNet":
assert len(out) == 3, "GoogLeNet should have 3 outputs" assert len(out) == 3, "GoogLeNet should have 3 outputs"
loss = GoogLeNetLoss(class_dim=classes_num, epsilon=epsilon) loss = GoogLeNetLoss(class_dim=classes_num, epsilon=epsilon)
return loss(out[0], out[1], out[2], label) return loss(out[0], out[1], out[2], feeds["label"])
if use_distillation: if use_distillation:
assert len(out) == 2, ("distillation output length must be 2, " assert len(out) == 2, ("distillation output length must be 2, "
...@@ -116,14 +114,13 @@ def create_loss(out, ...@@ -116,14 +114,13 @@ def create_loss(out,
if use_mix: if use_mix:
loss = MixCELoss(class_dim=classes_num, epsilon=epsilon) loss = MixCELoss(class_dim=classes_num, epsilon=epsilon)
raise NotImplementedError feed_y_a = feeds['y_a']
#feed_y_a = feeds['feed_y_a'] feed_y_b = feeds['y_b']
#feed_y_b = feeds['feed_y_b'] feed_lam = feeds['lam']
#feed_lam = feeds['feed_lam'] return loss(out, feed_y_a, feed_y_b, feed_lam)
#return loss(out, feed_y_a, feed_y_b, feed_lam)
else: else:
loss = CELoss(class_dim=classes_num, epsilon=epsilon) loss = CELoss(class_dim=classes_num, epsilon=epsilon)
return loss(out, label) return loss(out, feeds["label"])
def create_metric(out, def create_metric(out,
...@@ -166,8 +163,9 @@ def create_metric(out, ...@@ -166,8 +163,9 @@ def create_metric(out,
return fetchs return fetchs
def create_fetchs(out, def create_fetchs(feeds,
label, out,
config,
architecture, architecture,
topk=5, topk=5,
classes_num=1000, classes_num=1000,
...@@ -193,11 +191,11 @@ def create_fetchs(out, ...@@ -193,11 +191,11 @@ def create_fetchs(out,
fetchs(dict): dict of model outputs(included loss and measures) fetchs(dict): dict of model outputs(included loss and measures)
""" """
fetchs = OrderedDict() fetchs = OrderedDict()
fetchs['loss'] = create_loss(out, label, architecture, classes_num, epsilon, use_mix, fetchs['loss'] = create_loss(feeds, out, architecture, classes_num,
use_distillation) epsilon, use_mix, use_distillation)
if not use_mix: if not use_mix:
metric = create_metric(out, label, architecture, topk, classes_num, metric = create_metric(out, feeds["label"], architecture, topk,
use_distillation) classes_num, use_distillation)
fetchs.update(metric) fetchs.update(metric)
return fetchs return fetchs
...@@ -278,7 +276,7 @@ def mixed_precision_optimizer(config, optimizer): ...@@ -278,7 +276,7 @@ def mixed_precision_optimizer(config, optimizer):
return optimizer return optimizer
def compute(config, out, label, mode='train'): def compute(feeds, net, config, mode='train'):
""" """
Build a program using a model and an optimizer Build a program using a model and an optimizer
1. create feeds 1. create feeds
...@@ -297,9 +295,11 @@ def compute(config, out, label, mode='train'): ...@@ -297,9 +295,11 @@ def compute(config, out, label, mode='train'):
dataloader(): a bridge between the model and the data dataloader(): a bridge between the model and the data
fetchs(dict): dict of model outputs(included loss and measures) fetchs(dict): dict of model outputs(included loss and measures)
""" """
out = net(feeds["image"])
fetchs = create_fetchs( fetchs = create_fetchs(
feeds,
out, out,
label, config,
config.ARCHITECTURE, config.ARCHITECTURE,
config.topk, config.topk,
config.classes_num, config.classes_num,
...@@ -310,6 +310,20 @@ def compute(config, out, label, mode='train'): ...@@ -310,6 +310,20 @@ def compute(config, out, label, mode='train'):
return fetchs return fetchs
def create_feeds(batch, use_mix):
if use_mix:
image = batch[0]
y_a = to_variable(batch[1].numpy().astype("int64").reshape(-1, 1))
y_b = to_variable(batch[2].numpy().astype("int64").reshape(-1, 1))
lam = to_variable(batch[3].numpy().astype("float32").reshape(-1, 1))
feeds = {"image": image, "y_a": y_a, "y_b": y_b, "lam": lam}
else:
image = batch[0]
label = to_variable(batch[1].numpy().astype('int64').reshape(-1, 1))
feeds = {"image": image, "label": label}
return feeds
def run(dataloader, config, net, optimizer=None, epoch=0, mode='train'): def run(dataloader, config, net, optimizer=None, epoch=0, mode='train'):
""" """
Feed data to the model and fetch the measures and loss Feed data to the model and fetch the measures and loss
...@@ -329,14 +343,16 @@ def run(dataloader, config, net, optimizer=None, epoch=0, mode='train'): ...@@ -329,14 +343,16 @@ def run(dataloader, config, net, optimizer=None, epoch=0, mode='train'):
("loss", AverageMeter('loss', '7.4f')), ("loss", AverageMeter('loss', '7.4f')),
("top1", AverageMeter('top1', '.4f')), ("top1", AverageMeter('top1', '.4f')),
(topk_name, AverageMeter(topk_name, '.4f')), (topk_name, AverageMeter(topk_name, '.4f')),
("lr", AverageMeter('lr', 'f', need_avg=False)), ("lr", AverageMeter(
'lr', 'f', need_avg=False)),
("batch_time", AverageMeter('elapse', '.3f')), ("batch_time", AverageMeter('elapse', '.3f')),
]) ])
tic = time.time() tic = time.time()
for idx, (img, label) in enumerate(dataloader()): for idx, batch in enumerate(dataloader()):
label = to_variable(label.numpy().astype('int64').reshape(-1, 1)) bs = len(batch[0])
fetchs = compute(config, net(img), label, mode) feeds = create_feeds(batch, config.get("use_mix", False))
fetchs = compute(feeds, net, config, mode)
if mode == 'train': if mode == 'train':
avg_loss = net.scale_loss(fetchs['loss']) avg_loss = net.scale_loss(fetchs['loss'])
avg_loss.backward() avg_loss.backward()
...@@ -345,10 +361,10 @@ def run(dataloader, config, net, optimizer=None, epoch=0, mode='train'): ...@@ -345,10 +361,10 @@ def run(dataloader, config, net, optimizer=None, epoch=0, mode='train'):
optimizer.minimize(avg_loss) optimizer.minimize(avg_loss)
net.clear_gradients() net.clear_gradients()
metric_list['lr'].update( metric_list['lr'].update(
optimizer._global_learning_rate().numpy()[0], len(img)) optimizer._global_learning_rate().numpy()[0], bs)
for name, fetch in fetchs.items(): for name, fetch in fetchs.items():
metric_list[name].update(fetch.numpy()[0], len(img)) metric_list[name].update(fetch.numpy()[0], bs)
metric_list['batch_time'].update(time.time() - tic) metric_list['batch_time'].update(time.time() - tic)
tic = time.time() tic = time.time()
...@@ -365,7 +381,8 @@ def run(dataloader, config, net, optimizer=None, epoch=0, mode='train'): ...@@ -365,7 +381,8 @@ def run(dataloader, config, net, optimizer=None, epoch=0, mode='train'):
logger.coloring(step_str, "PURPLE"), logger.coloring(step_str, "PURPLE"),
logger.coloring(fetchs_str, 'OKGREEN'))) logger.coloring(fetchs_str, 'OKGREEN')))
end_str = ' '.join([str(m.mean) for m in metric_list.values()] + [metric_list['batch_time'].total]) end_str = ' '.join([str(m.mean) for m in metric_list.values()] +
[metric_list['batch_time'].total])
if mode == 'eval': if mode == 'eval':
logger.info("END {:s} {:s}s".format(mode, end_str)) logger.info("END {:s} {:s}s".format(mode, end_str))
else: else:
...@@ -378,4 +395,4 @@ def run(dataloader, config, net, optimizer=None, epoch=0, mode='train'): ...@@ -378,4 +395,4 @@ def run(dataloader, config, net, optimizer=None, epoch=0, mode='train'):
# return top1_acc in order to save the best model # return top1_acc in order to save the best model
if mode == 'valid': if mode == 'valid':
return metric_list['top1'].avg return metric_list['top1'].avg
\ No newline at end of file
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册