Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
691ec863
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
1 年多 前同步成功
通知
116
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
691ec863
编写于
8月 19, 2021
作者:
L
lyuwenyu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
using ppcls pretrained
上级
c209053c
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
47 addition
and
104 deletion
+47
-104
hubconf.py
hubconf.py
+47
-104
未找到文件。
hubconf.py
浏览文件 @
691ec863
...
...
@@ -63,9 +63,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `AlexNet` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
AlexNet
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'AlexNet'
)
return
model
...
...
@@ -80,9 +79,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `VGG11` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
VGG11
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'VGG11'
)
return
model
...
...
@@ -97,9 +95,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `VGG13` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
VGG13
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'VGG13'
)
return
model
...
...
@@ -114,9 +111,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `VGG16` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
VGG16
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'VGG16'
)
return
model
...
...
@@ -131,9 +127,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `VGG19` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
VGG19
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'VGG19'
)
return
model
...
...
@@ -149,9 +144,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `ResNet18` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
ResNet18
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNet18'
)
return
model
...
...
@@ -167,9 +161,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `ResNet34` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
ResNet34
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNet34'
)
return
model
...
...
@@ -185,9 +178,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `ResNet50` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
ResNet50
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNet50'
)
return
model
...
...
@@ -203,9 +195,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `ResNet101` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
ResNet101
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNet101'
)
return
model
...
...
@@ -221,9 +212,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `ResNet152` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
ResNet152
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNet152'
)
return
model
...
...
@@ -237,9 +227,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `SqueezeNet1_0` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
SqueezeNet1_0
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'SqueezeNet1_0'
)
return
model
...
...
@@ -253,9 +242,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `SqueezeNet1_1` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
SqueezeNet1_1
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'SqueezeNet1_1'
)
return
model
...
...
@@ -271,9 +259,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `DenseNet121` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
DenseNet121
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'DenseNet121'
)
return
model
...
...
@@ -289,9 +276,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `DenseNet161` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
DenseNet161
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'DenseNet161'
)
return
model
...
...
@@ -307,9 +293,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `DenseNet169` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
DenseNet169
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'DenseNet169'
)
return
model
...
...
@@ -325,9 +310,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `DenseNet201` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
DenseNet201
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'DenseNet201'
)
return
model
...
...
@@ -343,9 +327,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `DenseNet264` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
DenseNet264
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'DenseNet264'
)
return
model
...
...
@@ -359,9 +342,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `InceptionV3` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
InceptionV3
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'InceptionV3'
)
return
model
...
...
@@ -375,9 +357,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `InceptionV4` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
InceptionV4
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'InceptionV4'
)
return
model
...
...
@@ -391,9 +372,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `GoogLeNet` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
GoogLeNet
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'GoogLeNet'
)
return
model
...
...
@@ -407,9 +387,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `ShuffleNetV2_x0_25` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
ShuffleNetV2_x0_25
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ShuffleNetV2_x0_25'
)
return
model
...
...
@@ -423,9 +402,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV1` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV1
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1'
)
return
model
...
...
@@ -439,9 +417,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV1_x0_25` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV1_x0_25
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1_x0_25'
)
return
model
...
...
@@ -455,9 +432,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV1_x0_5` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV1_x0_5
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1_x0_5'
)
return
model
...
...
@@ -471,9 +447,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV1_x0_75` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV1_x0_75
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1_x0_75'
)
return
model
...
...
@@ -487,9 +462,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV2_x0_25` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV2_x0_25
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x0_25'
)
return
model
...
...
@@ -503,9 +477,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV2_x0_5` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV2_x0_5
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x0_5'
)
return
model
...
...
@@ -519,9 +492,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV2_x0_75` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV2_x0_75
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x0_75'
)
return
model
...
...
@@ -535,9 +507,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV2_x1_5` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV2_x1_5
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x1_5'
)
return
model
...
...
@@ -551,9 +522,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV2_x2_0` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV2_x2_0
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x2_0'
)
return
model
...
...
@@ -567,10 +537,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV3_large_x0_35` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV3_large_x0_35
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x0_35'
)
return
model
...
...
@@ -584,10 +552,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV3_large_x0_5` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV3_large_x0_5
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x0_5'
)
return
model
...
...
@@ -601,10 +567,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV3_large_x0_75` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV3_large_x0_75
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x0_75'
)
return
model
...
...
@@ -618,10 +582,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV3_large_x1_0` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV3_large_x1_0
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x1_0'
)
return
model
...
...
@@ -635,10 +597,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV3_large_x1_25` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV3_large_x1_25
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x1_25'
)
return
model
...
...
@@ -652,10 +612,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV3_small_x0_35` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV3_small_x0_35
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x0_35'
)
return
model
...
...
@@ -669,10 +627,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV3_small_x0_5` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV3_small_x0_5
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x0_5'
)
return
model
...
...
@@ -686,10 +642,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV3_small_x0_75` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV3_small_x0_75
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x0_75'
)
return
model
...
...
@@ -703,10 +657,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV3_small_x1_0` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV3_small_x1_0
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x1_0'
)
return
model
...
...
@@ -720,10 +672,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV3_small_x1_25` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV3_small_x1_25
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x1_25'
)
return
model
...
...
@@ -737,9 +687,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `ResNeXt101_32x4d` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
ResNeXt101_32x4d
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt101_32x4d'
)
return
model
...
...
@@ -753,9 +702,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `ResNeXt101_64x4d` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
ResNeXt101_64x4d
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt101_64x4d'
)
return
model
...
...
@@ -769,9 +717,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `ResNeXt152_32x4d` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
ResNeXt152_32x4d
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt152_32x4d'
)
return
model
...
...
@@ -785,9 +732,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `ResNeXt152_64x4d` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
ResNeXt152_64x4d
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt152_64x4d'
)
return
model
...
...
@@ -801,9 +747,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `ResNeXt50_32x4d` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
ResNeXt50_32x4d
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt50_32x4d'
)
return
model
...
...
@@ -817,9 +762,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `ResNeXt50_64x4d` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
ResNeXt50_64x4d
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt50_64x4d'
)
return
model
...
...
@@ -833,8 +777,7 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `ResNeXt50_64x4d` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
DarkNet53
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'DarkNet53'
)
return
model
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录