Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
674447f6
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
接近 2 年 前同步成功
通知
116
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
“efc119b43b1e2e296682c20d3a244234eb427405”上不存在“paddle/operators/sequence_softmax_op.cu”
提交
674447f6
编写于
4月 25, 2022
作者:
H
HydrogenSulfate
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine code
上级
97e8abc3
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
62 addition
and
162 deletion
+62
-162
ppcls/configs/Pedestrian/strong_baseline_baseline.yaml
ppcls/configs/Pedestrian/strong_baseline_baseline.yaml
+1
-0
ppcls/configs/Pedestrian/strong_baseline_m1.yaml
ppcls/configs/Pedestrian/strong_baseline_m1.yaml
+1
-0
ppcls/configs/Pedestrian/strong_baseline_m1_centerloss.yaml
ppcls/configs/Pedestrian/strong_baseline_m1_centerloss.yaml
+4
-2
ppcls/loss/centerloss.py
ppcls/loss/centerloss.py
+7
-2
ppcls/loss/triplet.py
ppcls/loss/triplet.py
+20
-122
ppcls/optimizer/__init__.py
ppcls/optimizer/__init__.py
+29
-36
未找到文件。
ppcls/configs/Pedestrian/strong_baseline_baseline.yaml
浏览文件 @
674447f6
...
@@ -48,6 +48,7 @@ Loss:
...
@@ -48,6 +48,7 @@ Loss:
weight
:
1.0
weight
:
1.0
margin
:
0.3
margin
:
0.3
normalize_feature
:
false
normalize_feature
:
false
feat_from
:
"
backbone"
Eval
:
Eval
:
-
CELoss
:
-
CELoss
:
weight
:
1.0
weight
:
1.0
...
...
ppcls/configs/Pedestrian/strong_baseline_m1.yaml
浏览文件 @
674447f6
...
@@ -61,6 +61,7 @@ Loss:
...
@@ -61,6 +61,7 @@ Loss:
weight
:
1.0
weight
:
1.0
margin
:
0.3
margin
:
0.3
normalize_feature
:
false
normalize_feature
:
false
feat_from
:
"
backbone"
Eval
:
Eval
:
-
CELoss
:
-
CELoss
:
weight
:
1.0
weight
:
1.0
...
...
ppcls/configs/Pedestrian/strong_baseline_m1_centerloss.yaml
浏览文件 @
674447f6
...
@@ -40,7 +40,7 @@ Arch:
...
@@ -40,7 +40,7 @@ Arch:
initializer
:
initializer
:
name
:
Constant
name
:
Constant
value
:
0.0
value
:
0.0
learning_rate
:
1.0e-20
#
TODO
: Temporarily set lr small enough to freeze the bias
learning_rate
:
1.0e-20
#
NOTE
: Temporarily set lr small enough to freeze the bias
Head
:
Head
:
name
:
"
FC"
name
:
"
FC"
embedding_size
:
*feat_dim
embedding_size
:
*feat_dim
...
@@ -57,14 +57,16 @@ Loss:
...
@@ -57,14 +57,16 @@ Loss:
-
CELoss
:
-
CELoss
:
weight
:
1.0
weight
:
1.0
epsilon
:
0.1
epsilon
:
0.1
-
TripletLossV
3
:
-
TripletLossV
2
:
weight
:
1.0
weight
:
1.0
margin
:
0.3
margin
:
0.3
normalize_feature
:
false
normalize_feature
:
false
feat_from
:
"
backbone"
-
CenterLoss
:
-
CenterLoss
:
weight
:
0.0005
weight
:
0.0005
num_classes
:
*class_num
num_classes
:
*class_num
feat_dim
:
*feat_dim
feat_dim
:
*feat_dim
feat_from
:
"
backbone"
Eval
:
Eval
:
-
CELoss
:
-
CELoss
:
weight
:
1.0
weight
:
1.0
...
...
ppcls/loss/centerloss.py
浏览文件 @
674447f6
...
@@ -28,12 +28,17 @@ class CenterLoss(nn.Layer):
...
@@ -28,12 +28,17 @@ class CenterLoss(nn.Layer):
Args:
Args:
num_classes (int): number of classes.
num_classes (int): number of classes.
feat_dim (int): number of feature dimensions.
feat_dim (int): number of feature dimensions.
feat_from (str): features from backbone or neck
"""
"""
def
__init__
(
self
,
num_classes
:
int
,
feat_dim
:
int
):
def
__init__
(
self
,
num_classes
:
int
,
feat_dim
:
int
,
feat_from
:
str
=
'backbone'
):
super
(
CenterLoss
,
self
).
__init__
()
super
(
CenterLoss
,
self
).
__init__
()
self
.
num_classes
=
num_classes
self
.
num_classes
=
num_classes
self
.
feat_dim
=
feat_dim
self
.
feat_dim
=
feat_dim
self
.
feat_from
=
feat_from
random_init_centers
=
paddle
.
randn
(
random_init_centers
=
paddle
.
randn
(
shape
=
[
self
.
num_classes
,
self
.
feat_dim
])
shape
=
[
self
.
num_classes
,
self
.
feat_dim
])
self
.
centers
=
self
.
create_parameter
(
self
.
centers
=
self
.
create_parameter
(
...
@@ -52,7 +57,7 @@ class CenterLoss(nn.Layer):
...
@@ -52,7 +57,7 @@ class CenterLoss(nn.Layer):
Returns:
Returns:
Dict[str, paddle.Tensor]: {'CenterLoss': loss}.
Dict[str, paddle.Tensor]: {'CenterLoss': loss}.
"""
"""
feats
=
input
[
'backbone'
]
feats
=
input
[
self
.
feat_from
]
labels
=
target
labels
=
target
# squeeze labels to shape (batch_size, )
# squeeze labels to shape (batch_size, )
...
...
ppcls/loss/triplet.py
浏览文件 @
674447f6
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
division
from
__future__
import
print_function
from
__future__
import
print_function
from
typing
import
Tuple
import
paddle
import
paddle
import
paddle.nn
as
nn
import
paddle.nn
as
nn
...
@@ -13,9 +26,13 @@ class TripletLossV2(nn.Layer):
...
@@ -13,9 +26,13 @@ class TripletLossV2(nn.Layer):
margin (float): margin for triplet.
margin (float): margin for triplet.
"""
"""
def
__init__
(
self
,
margin
=
0.5
,
normalize_feature
=
True
):
def
__init__
(
self
,
margin
=
0.5
,
normalize_feature
=
True
,
feat_from
=
'backbone'
):
super
(
TripletLossV2
,
self
).
__init__
()
super
(
TripletLossV2
,
self
).
__init__
()
self
.
margin
=
margin
self
.
margin
=
margin
self
.
feat_from
=
feat_from
self
.
ranking_loss
=
paddle
.
nn
.
loss
.
MarginRankingLoss
(
margin
=
margin
)
self
.
ranking_loss
=
paddle
.
nn
.
loss
.
MarginRankingLoss
(
margin
=
margin
)
self
.
normalize_feature
=
normalize_feature
self
.
normalize_feature
=
normalize_feature
...
@@ -25,7 +42,7 @@ class TripletLossV2(nn.Layer):
...
@@ -25,7 +42,7 @@ class TripletLossV2(nn.Layer):
inputs: feature matrix with shape (batch_size, feat_dim)
inputs: feature matrix with shape (batch_size, feat_dim)
target: ground truth labels with shape (num_classes)
target: ground truth labels with shape (num_classes)
"""
"""
inputs
=
input
[
"backbone"
]
inputs
=
input
[
self
.
feat_from
]
if
self
.
normalize_feature
:
if
self
.
normalize_feature
:
inputs
=
1.
*
inputs
/
(
paddle
.
expand_as
(
inputs
=
1.
*
inputs
/
(
paddle
.
expand_as
(
...
@@ -136,122 +153,3 @@ class TripletLoss(nn.Layer):
...
@@ -136,122 +153,3 @@ class TripletLoss(nn.Layer):
y
=
paddle
.
ones_like
(
dist_an
)
y
=
paddle
.
ones_like
(
dist_an
)
loss
=
self
.
ranking_loss
(
dist_an
,
dist_ap
,
y
)
loss
=
self
.
ranking_loss
(
dist_an
,
dist_ap
,
y
)
return
{
"TripletLoss"
:
loss
}
return
{
"TripletLoss"
:
loss
}
class
TripletLossV3
(
nn
.
Layer
):
"""Modified from Tong Xiao's open-reid (https://github.com/Cysu/open-reid).
Related Triplet Loss theory can be found in paper 'In Defense of the Triplet
Loss for Person Re-Identification'."""
def
__init__
(
self
,
margin
=
None
,
normalize_feature
=
False
):
super
(
TripletLossV3
,
self
).
__init__
()
self
.
normalize_feature
=
normalize_feature
self
.
margin
=
margin
if
margin
is
not
None
:
self
.
ranking_loss
=
nn
.
MarginRankingLoss
(
margin
=
margin
)
else
:
self
.
ranking_loss
=
nn
.
SoftMarginLoss
()
def
forward
(
self
,
input
,
target
):
global_feat
=
input
[
"backbone"
]
if
self
.
normalize_feature
:
global_feat
=
self
.
_normalize
(
global_feat
,
axis
=-
1
)
dist_mat
=
self
.
_euclidean_dist
(
global_feat
,
global_feat
)
dist_ap
,
dist_an
=
self
.
_hard_example_mining
(
dist_mat
,
target
)
y
=
paddle
.
ones_like
(
dist_an
)
if
self
.
margin
is
not
None
:
loss
=
self
.
ranking_loss
(
dist_an
,
dist_ap
,
y
)
return
{
"TripletLossV3"
:
loss
}
def
_normalize
(
self
,
x
:
paddle
.
Tensor
,
axis
:
int
=-
1
)
->
paddle
.
Tensor
:
"""Normalizing to unit length along the specified dimension.
Args:
x (paddle.Tensor): (batch_size, feature_dim)
axis (int, optional): normalization dim. Defaults to -1.
Returns:
paddle.Tensor: (batch_size, feature_dim)
"""
x
=
1.
*
x
/
(
paddle
.
norm
(
x
,
2
,
axis
,
keepdim
=
True
).
expand_as
(
x
)
+
1e-12
)
return
x
def
_euclidean_dist
(
self
,
x
:
paddle
.
Tensor
,
y
:
paddle
.
Tensor
)
->
paddle
.
Tensor
:
"""compute euclidean distance between two batched vectors
Args:
x (paddle.Tensor): (N, feature_dim)
y (paddle.Tensor): (M, feature_dim)
Returns:
paddle.Tensor: (N, M)
"""
m
,
n
=
x
.
shape
[
0
],
y
.
shape
[
0
]
d
=
x
.
shape
[
1
]
xx
=
paddle
.
pow
(
x
,
2
).
sum
(
1
,
keepdim
=
True
).
expand
([
m
,
n
])
yy
=
paddle
.
pow
(
y
,
2
).
sum
(
1
,
keepdim
=
True
).
expand
([
n
,
m
]).
t
()
dist
=
xx
+
yy
dist
=
dist
.
addmm
(
x
,
y
.
t
(),
alpha
=-
2
,
beta
=
1
)
# dist = dist - 2*(x@y.t())
dist
=
dist
.
clip
(
min
=
1e-12
).
sqrt
()
# for numerical stability
return
dist
def
_hard_example_mining
(
self
,
dist_mat
:
paddle
.
Tensor
,
labels
:
paddle
.
Tensor
,
return_inds
:
bool
=
False
)
->
Tuple
[
paddle
.
Tensor
,
paddle
.
Tensor
]:
"""For each anchor, find the hardest positive and negative sample.
Args:
dist_mat (paddle.Tensor): pair wise distance between samples, [N, N]
labels (paddle.Tensor): labels, [N, ]
return_inds (bool, optional): whether to return the indices . Defaults to False.
Returns:
Tuple[paddle.Tensor, paddle.Tensor]: [(N, ), (N, )]
NOTE: Only consider the case in which all labels have same num of samples,
thus we can cope with all anchors in parallel.
"""
assert
len
(
dist_mat
.
shape
)
==
2
assert
dist_mat
.
shape
[
0
]
==
dist_mat
.
shape
[
1
]
N
=
dist_mat
.
shape
[
0
]
# shape [N, N]
is_pos
=
labels
.
expand
([
N
,
N
]).
equal
(
labels
.
expand
([
N
,
N
]).
t
())
is_neg
=
labels
.
expand
([
N
,
N
]).
not_equal
(
labels
.
expand
([
N
,
N
]).
t
())
# `dist_ap` means distance(anchor, positive)
# both `dist_ap` and `relative_p_inds` with shape [N, 1]
dist_ap
=
paddle
.
max
(
dist_mat
[
is_pos
].
reshape
([
N
,
-
1
]),
1
,
keepdim
=
True
)
# `dist_an` means distance(anchor, negative)
# both `dist_an` and `relative_n_inds` with shape [N, 1]
dist_an
=
paddle
.
min
(
dist_mat
[
is_neg
].
reshape
([
N
,
-
1
]),
1
,
keepdim
=
True
)
# shape [N]
dist_ap
=
dist_ap
.
squeeze
(
1
)
dist_an
=
dist_an
.
squeeze
(
1
)
if
return_inds
:
# shape [N, N]
ind
=
(
labels
.
new
().
resize_as_
(
labels
)
.
copy_
(
paddle
.
arange
(
0
,
N
).
long
())
.
unsqueeze
(
0
).
expand
(
N
,
N
))
# shape [N, 1]
p_inds
=
paddle
.
gather
(
ind
[
is_pos
].
reshape
([
N
,
-
1
]),
1
,
relative_p_inds
.
data
)
n_inds
=
paddle
.
gather
(
ind
[
is_neg
].
reshape
([
N
,
-
1
]),
1
,
relative_n_inds
.
data
)
# shape [N]
p_inds
=
p_inds
.
squeeze
(
1
)
n_inds
=
n_inds
.
squeeze
(
1
)
return
dist_ap
,
dist_an
,
p_inds
,
n_inds
return
dist_ap
,
dist_an
ppcls/optimizer/__init__.py
浏览文件 @
674447f6
...
@@ -46,7 +46,7 @@ def build_lr_scheduler(lr_config, epochs, step_each_epoch):
...
@@ -46,7 +46,7 @@ def build_lr_scheduler(lr_config, epochs, step_each_epoch):
def
build_optimizer
(
config
,
epochs
,
step_each_epoch
,
model_list
=
None
):
def
build_optimizer
(
config
,
epochs
,
step_each_epoch
,
model_list
=
None
):
optim_config
=
copy
.
deepcopy
(
config
)
optim_config
=
copy
.
deepcopy
(
config
)
if
isinstance
(
optim_config
,
dict
):
if
isinstance
(
optim_config
,
dict
):
# convert {'name': xxx, **optim_cfg} to [{
'name': {'scope'
: xxx, **optim_cfg}}]
# convert {'name': xxx, **optim_cfg} to [{
name: {scope
: xxx, **optim_cfg}}]
optim_name
=
optim_config
.
pop
(
"name"
)
optim_name
=
optim_config
.
pop
(
"name"
)
optim_config
:
List
[
Dict
[
str
,
Dict
]]
=
[{
optim_config
:
List
[
Dict
[
str
,
Dict
]]
=
[{
optim_name
:
{
optim_name
:
{
...
@@ -60,20 +60,19 @@ def build_optimizer(config, epochs, step_each_epoch, model_list=None):
...
@@ -60,20 +60,19 @@ def build_optimizer(config, epochs, step_each_epoch, model_list=None):
"""NOTE:
"""NOTE:
Currently only support optim objets below.
Currently only support optim objets below.
1. single optimizer config.
1. single optimizer config.
2.
model(entire Arch), backbone, neck,
head.
2.
next level uner Arch, such as Arch.backbone, Arch.neck, Arch.
head.
3. loss
(entire Loss), specific loss listed in ppcls/loss/__init__.py
.
3. loss
which has parameters, such as CenterLoss
.
"""
"""
for
optim_item
in
optim_config
:
for
optim_item
in
optim_config
:
# optim_cfg = {optim_name: {
'scope'
: xxx, **optim_cfg}}
# optim_cfg = {optim_name: {
scope
: xxx, **optim_cfg}}
# step1 build lr
# step1 build lr
optim_name
=
list
(
optim_item
.
keys
())[
0
]
# get optim_name
optim_name
=
list
(
optim_item
.
keys
())[
0
]
# get optim_name
optim_scope_list
=
optim_item
[
optim_name
].
pop
(
'scope'
).
split
(
optim_scope
=
optim_item
[
optim_name
].
pop
(
'scope'
)
# get optim_scope
' '
)
# get optim_scope list
optim_cfg
=
optim_item
[
optim_name
]
# get optim_cfg
optim_cfg
=
optim_item
[
optim_name
]
# get optim_cfg
lr
=
build_lr_scheduler
(
optim_cfg
.
pop
(
'lr'
),
epochs
,
step_each_epoch
)
lr
=
build_lr_scheduler
(
optim_cfg
.
pop
(
'lr'
),
epochs
,
step_each_epoch
)
logger
.
info
(
"build lr ({}) for scope ({}) success.."
.
format
(
logger
.
debug
(
"build lr ({}) for scope ({}) success.."
.
format
(
lr
.
__class__
.
__name__
,
optim_scope_list
))
lr
,
optim_scope
))
# step2 build regularization
# step2 build regularization
if
'regularizer'
in
optim_cfg
and
optim_cfg
[
'regularizer'
]
is
not
None
:
if
'regularizer'
in
optim_cfg
and
optim_cfg
[
'regularizer'
]
is
not
None
:
if
'weight_decay'
in
optim_cfg
:
if
'weight_decay'
in
optim_cfg
:
...
@@ -84,14 +83,12 @@ def build_optimizer(config, epochs, step_each_epoch, model_list=None):
...
@@ -84,14 +83,12 @@ def build_optimizer(config, epochs, step_each_epoch, model_list=None):
reg_name
=
reg_config
.
pop
(
'name'
)
+
'Decay'
reg_name
=
reg_config
.
pop
(
'name'
)
+
'Decay'
reg
=
getattr
(
paddle
.
regularizer
,
reg_name
)(
**
reg_config
)
reg
=
getattr
(
paddle
.
regularizer
,
reg_name
)(
**
reg_config
)
optim_cfg
[
"weight_decay"
]
=
reg
optim_cfg
[
"weight_decay"
]
=
reg
logger
.
info
(
"build regularizer ({}) for scope ({}) success.."
.
logger
.
debug
(
"build regularizer ({}) for scope ({}) success.."
.
format
(
reg
.
__class__
.
__name__
,
optim_scope_list
))
format
(
reg
,
optim_scope
))
# step3 build optimizer
# step3 build optimizer
if
'clip_norm'
in
optim_cfg
:
if
'clip_norm'
in
optim_cfg
:
clip_norm
=
optim_cfg
.
pop
(
'clip_norm'
)
clip_norm
=
optim_cfg
.
pop
(
'clip_norm'
)
grad_clip
=
paddle
.
nn
.
ClipGradByNorm
(
clip_norm
=
clip_norm
)
grad_clip
=
paddle
.
nn
.
ClipGradByNorm
(
clip_norm
=
clip_norm
)
logger
.
info
(
"build gradclip ({}) for scope ({}) success.."
.
format
(
grad_clip
.
__class__
.
__name__
,
optim_scope_list
))
else
:
else
:
grad_clip
=
None
grad_clip
=
None
optim_model
=
[]
optim_model
=
[]
...
@@ -104,34 +101,30 @@ def build_optimizer(config, epochs, step_each_epoch, model_list=None):
...
@@ -104,34 +101,30 @@ def build_optimizer(config, epochs, step_each_epoch, model_list=None):
return
optim
,
lr
return
optim
,
lr
# for dynamic graph
# for dynamic graph
for
scope
in
optim_scope_list
:
for
i
in
range
(
len
(
model_list
)):
if
scope
==
"all"
:
if
len
(
model_list
[
i
].
parameters
())
==
0
:
optim_model
+=
model_list
continue
elif
scope
==
"model"
:
if
optim_scope
==
"all"
:
optim_model
+=
[
model_list
[
0
],
]
# optimizer for all
elif
scope
in
[
"backbone"
,
"neck"
,
"head"
]:
optim_model
.
append
(
model_list
[
i
])
optim_model
+=
[
getattr
(
model_list
[
0
],
scope
,
None
),
]
elif
scope
==
"loss"
:
optim_model
+=
[
model_list
[
1
],
]
else
:
else
:
optim_model
+=
[
if
optim_scope
.
endswith
(
"Loss"
):
model_list
[
1
].
loss_func
[
i
]
# optimizer for loss
for
i
in
range
(
len
(
model_list
[
1
].
loss_func
))
for
m
in
model_list
[
i
].
sublayers
(
True
):
if
model_list
[
1
].
loss_func
[
i
].
__class__
.
__name__
==
scope
if
m
.
__class__
.
__name__
==
optim_scope
:
]
optim_model
.
append
(
m
)
# remove invalid items
else
:
optim_model
=
[
# opmizer for module in model, such as backbone, neck, head...
optim_model
[
i
]
for
i
in
range
(
len
(
optim_model
))
if
hasattr
(
model_list
[
i
],
optim_scope
):
if
(
optim_model
[
i
]
is
not
None
optim_model
.
append
(
getattr
(
model_list
[
i
],
optim_scope
))
)
and
(
len
(
optim_model
[
i
].
parameters
())
>
0
)
]
assert
len
(
optim_model
)
==
1
,
\
assert
len
(
optim_model
)
>
0
,
\
"Invalid optim model for optim scope({}), number of optim_model={}"
.
format
(
optim_scope
,
len
(
optim_model
))
f
"optim_model is empty for optim_scope(
{
optim_scope_list
}
)"
optim
=
getattr
(
optimizer
,
optim_name
)(
optim
=
getattr
(
optimizer
,
optim_name
)(
learning_rate
=
lr
,
grad_clip
=
grad_clip
,
learning_rate
=
lr
,
grad_clip
=
grad_clip
,
**
optim_cfg
)(
model_list
=
optim_model
)
**
optim_cfg
)(
model_list
=
optim_model
)
logger
.
info
(
"build optimizer ({}) for scope ({}) success.."
.
format
(
logger
.
debug
(
"build optimizer ({}) for scope ({}) success.."
.
format
(
optim
.
__class__
.
__name__
,
optim_scope_list
))
optim
,
optim_scope
))
optim_list
.
append
(
optim
)
optim_list
.
append
(
optim
)
lr_list
.
append
(
lr
)
lr_list
.
append
(
lr
)
return
optim_list
,
lr_list
return
optim_list
,
lr_list
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录