Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
65780c29
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
65780c29
编写于
6月 11, 2021
作者:
B
Bin Lu
提交者:
GitHub
6月 11, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update metrics.py
上级
3a2f97a9
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
47 addition
and
95 deletion
+47
-95
ppcls/metric/metrics.py
ppcls/metric/metrics.py
+47
-95
未找到文件。
ppcls/metric/metrics.py
浏览文件 @
65780c29
...
@@ -15,8 +15,6 @@
...
@@ -15,8 +15,6 @@
import
numpy
as
np
import
numpy
as
np
import
paddle
import
paddle
import
paddle.nn
as
nn
import
paddle.nn
as
nn
from
functools
import
lru_cache
class
TopkAcc
(
nn
.
Layer
):
class
TopkAcc
(
nn
.
Layer
):
def
__init__
(
self
,
topk
=
(
1
,
5
)):
def
__init__
(
self
,
topk
=
(
1
,
5
)):
...
@@ -36,35 +34,54 @@ class TopkAcc(nn.Layer):
...
@@ -36,35 +34,54 @@ class TopkAcc(nn.Layer):
x
,
label
,
k
=
k
)
x
,
label
,
k
=
k
)
return
metric_dict
return
metric_dict
class
mAP
(
nn
.
Layer
):
class
mAP
(
nn
.
Layer
):
def
__init__
(
self
):
def
__init__
(
self
):
super
().
__init__
()
super
().
__init__
()
def
forward
(
self
,
similarities_matrix
,
query_
img_id
,
gallery_img_id
):
def
forward
(
self
,
similarities_matrix
,
query_
labels
,
gallery_labels
):
metric_dict
=
dict
()
metric_dict
=
dict
()
_
,
all_AP
,
_
=
get_metrics
(
similarities_matrix
,
query_img_id
,
gallery_img_id
)
choosen_indices
=
paddle
.
argsort
(
similarities_matrix
,
axis
=
1
,
descending
=
True
)
gallery_labels_transpose
=
paddle
.
transpose
(
gallery_labels
,
[
1
,
0
])
mAP
=
np
.
mean
(
all_AP
)
gallery_labels_transpose
=
paddle
.
broadcast_to
(
gallery_labels_transpose
,
shape
=
[
choosen_indices
.
shape
[
0
],
gallery_labels_transpose
.
shape
[
1
]])
metric_dict
[
"mAP"
]
=
mAP
choosen_label
=
paddle
.
index_sample
(
gallery_labels_transpose
,
choosen_indices
)
equal_flag
=
paddle
.
equal
(
choosen_label
,
query_labels
)
equal_flag
=
paddle
.
cast
(
equal_flag
,
'float32'
)
acc_sum
=
paddle
.
cumsum
(
equal_flag
,
axis
=
1
)
div
=
paddle
.
arange
(
acc_sum
.
shape
[
1
]).
astype
(
"float32"
)
+
1
precision
=
paddle
.
divide
(
acc_sum
,
div
)
#calc map
precision_mask
=
paddle
.
multiply
(
equal_flag
,
precision
)
ap
=
paddle
.
sum
(
precision_mask
,
axis
=
1
)
/
paddle
.
sum
(
equal_flag
,
axis
=
1
)
metric_dict
[
"mAP"
]
=
paddle
.
mean
(
ap
).
numpy
()[
0
]
return
metric_dict
return
metric_dict
class
mINP
(
nn
.
Layer
):
class
mINP
(
nn
.
Layer
):
def
__init__
(
self
):
def
__init__
(
self
):
super
().
__init__
()
super
().
__init__
()
def
forward
(
self
,
similarities_matrix
,
query_
img_id
,
gallery_img_id
):
def
forward
(
self
,
similarities_matrix
,
query_
labels
,
gallery_labels
):
metric_dict
=
dict
()
metric_dict
=
dict
()
_
,
_
,
all_INP
=
get_metrics
(
similarities_matrix
,
query_img_id
,
gallery_img_id
)
choosen_indices
=
paddle
.
argsort
(
similarities_matrix
,
axis
=
1
,
descending
=
True
)
gallery_labels_transpose
=
paddle
.
transpose
(
gallery_labels
,
[
1
,
0
])
mINP
=
np
.
mean
(
all_INP
)
gallery_labels_transpose
=
paddle
.
broadcast_to
(
gallery_labels_transpose
,
shape
=
[
choosen_indices
.
shape
[
0
],
gallery_labels_transpose
.
shape
[
1
]])
metric_dict
[
"mINP"
]
=
mINP
choosen_label
=
paddle
.
index_sample
(
gallery_labels_transpose
,
choosen_indices
)
tmp
=
paddle
.
equal
(
choosen_label
,
query_labels
)
tmp
=
paddle
.
cast
(
tmp
,
'float64'
)
#do accumulative sum
div
=
paddle
.
arange
(
tmp
.
shape
[
1
]).
astype
(
"float64"
)
+
2
minus
=
paddle
.
divide
(
tmp
,
div
)
auxilary
=
paddle
.
subtract
(
tmp
,
minus
)
hard_index
=
paddle
.
argmax
(
auxilary
,
axis
=
1
).
astype
(
"float64"
)
all_INP
=
paddle
.
divide
(
paddle
.
sum
(
tmp
,
axis
=
1
),
hard_index
)
mINP
=
paddle
.
mean
(
all_INP
)
metric_dict
[
"mINP"
]
=
mINP
.
numpy
()[
0
]
return
metric_dict
return
metric_dict
class
Recallk
(
nn
.
Layer
):
class
Recallk
(
nn
.
Layer
):
def
__init__
(
self
,
topk
=
(
1
,
5
)):
def
__init__
(
self
,
topk
=
(
1
,
5
)):
super
().
__init__
()
super
().
__init__
()
...
@@ -72,91 +89,26 @@ class Recallk(nn.Layer):
...
@@ -72,91 +89,26 @@ class Recallk(nn.Layer):
if
isinstance
(
topk
,
int
):
if
isinstance
(
topk
,
int
):
topk
=
[
topk
]
topk
=
[
topk
]
self
.
topk
=
topk
self
.
topk
=
topk
self
.
max_rank
=
max
(
self
.
topk
)
if
max
(
self
.
topk
)
>
50
else
50
def
forward
(
self
,
similarities_matrix
,
query_
img_id
,
gallery_img_id
):
def
forward
(
self
,
similarities_matrix
,
query_
labels
,
gallery_labels
):
metric_dict
=
dict
()
metric_dict
=
dict
()
all_cmc
,
_
,
_
=
get_metrics
(
similarities_matrix
,
query_img_id
,
gallery_img_id
,
self
.
max_rank
)
#get cmc
choosen_indices
=
paddle
.
argsort
(
similarities_matrix
,
axis
=
1
,
descending
=
True
)
gallery_labels_transpose
=
paddle
.
transpose
(
gallery_labels
,
[
1
,
0
])
gallery_labels_transpose
=
paddle
.
broadcast_to
(
gallery_labels_transpose
,
shape
=
[
choosen_indices
.
shape
[
0
],
gallery_labels_transpose
.
shape
[
1
]])
choosen_label
=
paddle
.
index_sample
(
gallery_labels_transpose
,
choosen_indices
)
equal_flag
=
paddle
.
equal
(
choosen_label
,
query_labels
)
equal_flag
=
paddle
.
cast
(
equal_flag
,
'float32'
)
acc_sum
=
paddle
.
cumsum
(
equal_flag
,
axis
=
1
)
mask
=
paddle
.
greater_than
(
acc_sum
,
paddle
.
to_tensor
(
0.
)).
astype
(
"float32"
)
all_cmc
=
paddle
.
mean
(
mask
,
axis
=
0
).
numpy
()
for
k
in
self
.
topk
:
for
k
in
self
.
topk
:
metric_dict
[
"recall{}"
.
format
(
k
)]
=
all_cmc
[
k
-
1
]
metric_dict
[
"recall{}"
.
format
(
k
)]
=
all_cmc
[
k
-
1
]
return
metric_dict
return
metric_dict
# retrieval metrics
class
RetriMetric
(
nn
.
Layer
):
def
__init__
(
self
,
config
):
super
().
__init__
()
self
.
config
=
config
self
.
max_rank
=
50
#max(self.topk) if max(self.topk) > 50 else 50
def
forward
(
self
,
similarities_matrix
,
query_img_id
,
gallery_img_id
):
metric_dict
=
dict
()
all_cmc
,
all_AP
,
all_INP
=
get_metrics
(
similarities_matrix
,
query_img_id
,
gallery_img_id
,
self
.
max_rank
)
if
"Recallk"
in
self
.
config
.
keys
():
topk
=
self
.
config
[
'Recallk'
][
'topk'
]
assert
isinstance
(
topk
,
(
int
,
list
,
tuple
))
if
isinstance
(
topk
,
int
):
topk
=
[
topk
]
for
k
in
topk
:
metric_dict
[
"recall{}"
.
format
(
k
)]
=
all_cmc
[
k
-
1
]
if
"mAP"
in
self
.
config
.
keys
():
mAP
=
np
.
mean
(
all_AP
)
metric_dict
[
"mAP"
]
=
mAP
if
"mINP"
in
self
.
config
.
keys
():
mINP
=
np
.
mean
(
all_INP
)
metric_dict
[
"mINP"
]
=
mINP
return
metric_dict
@
lru_cache
()
def
get_metrics
(
similarities_matrix
,
query_img_id
,
gallery_img_id
,
max_rank
=
50
):
num_q
,
num_g
=
similarities_matrix
.
shape
q_pids
=
query_img_id
.
numpy
().
reshape
((
query_img_id
.
shape
[
0
]))
g_pids
=
gallery_img_id
.
numpy
().
reshape
((
gallery_img_id
.
shape
[
0
]))
if
num_g
<
max_rank
:
max_rank
=
num_g
print
(
'Note: number of gallery samples is quite small, got {}'
.
format
(
num_g
))
indices
=
paddle
.
argsort
(
similarities_matrix
,
axis
=
1
,
descending
=
True
).
numpy
()
all_cmc
=
[]
all_AP
=
[]
all_INP
=
[]
num_valid_q
=
0
matches
=
(
g_pids
[
indices
]
==
q_pids
[:,
np
.
newaxis
]).
astype
(
np
.
int32
)
for
q_idx
in
range
(
num_q
):
raw_cmc
=
matches
[
q_idx
]
if
not
np
.
any
(
raw_cmc
):
continue
cmc
=
raw_cmc
.
cumsum
()
pos_idx
=
np
.
where
(
raw_cmc
==
1
)
max_pos_idx
=
np
.
max
(
pos_idx
)
inp
=
cmc
[
max_pos_idx
]
/
(
max_pos_idx
+
1.0
)
all_INP
.
append
(
inp
)
cmc
[
cmc
>
1
]
=
1
all_cmc
.
append
(
cmc
[:
max_rank
])
num_valid_q
+=
1.
num_rel
=
raw_cmc
.
sum
()
tmp_cmc
=
raw_cmc
.
cumsum
()
tmp_cmc
=
[
x
/
(
i
+
1.
)
for
i
,
x
in
enumerate
(
tmp_cmc
)]
tmp_cmc
=
np
.
asarray
(
tmp_cmc
)
*
raw_cmc
AP
=
tmp_cmc
.
sum
()
/
num_rel
all_AP
.
append
(
AP
)
assert
num_valid_q
>
0
,
'Error: all query identities do not appear in gallery'
all_cmc
=
np
.
asarray
(
all_cmc
).
astype
(
np
.
float32
)
all_cmc
=
all_cmc
.
sum
(
0
)
/
num_valid_q
return
all_cmc
,
all_AP
,
all_INP
class
DistillationTopkAcc
(
TopkAcc
):
class
DistillationTopkAcc
(
TopkAcc
):
def
__init__
(
self
,
model_key
,
feature_key
=
None
,
topk
=
(
1
,
5
)):
def
__init__
(
self
,
model_key
,
feature_key
=
None
,
topk
=
(
1
,
5
)):
super
().
__init__
(
topk
=
topk
)
super
().
__init__
(
topk
=
topk
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录