提交 6529765a 编写于 作者: W weishengyu

update pksampler

上级 af25e256
......@@ -48,50 +48,59 @@ class PKSampler(DistributedBatchSampler):
"PKSampler configs error, Sample_per_id must be a divisor of batch_size."
assert hasattr(self.dataset,
"labels"), "Dataset must have labels attribute."
self.sample_per_id = sample_per_id
self.sample_per_label = sample_per_id
self.label_dict = defaultdict(list)
self.sample_method = sample_method
for idx, label in enumerate(self.dataset.labels):
self.label_dict[label].append(idx)
self.label_list = list(self.label_dict)
assert len(self.label_list) * self.sample_per_label > self.batch_size, \
"batch size should be smaller than "
if self.sample_method == "id_avg_prob":
for idx, label in enumerate(self.dataset.labels):
self.label_dict[label].append(idx)
self.id_list = list(self.label_dict)
self.prob_list = np.array([1 / len(self.label_list)] *
len(self.label_list))
elif self.sample_method == "sample_avg_prob":
self.id_list = []
for idx, label in enumerate(self.dataset.labels):
self.label_dict[label].append(idx)
counter = []
for label_i in self.label_list:
counter.append(len(self.label_list[label_i]))
self.prob_list = np.array(counter) / sum(counter)
else:
logger.error(
"PKSampler only support id_avg_prob and sample_avg_prob sample method, "
"but receive {}.".format(self.sample_method))
if sum(np.abs(self.prob_list - 1) > 0.00000001):
self.prob_list[-1] = 1 - sum(self.prob_list[:-1])
if self.prob_list[-1] > 1 or self.prob_list[-1] < 0:
logger.error("PKSampler prob list error")
else:
logger.info(
"PKSampler: sum of prob list not equal to 1, change the last prob"
)
def __iter__(self):
label_per_batch = self.batch_size // self.sample_per_label
if self.shuffle:
np.random.RandomState(self.epoch).shuffle(self.id_list)
id_list = self.id_list[self.local_rank * len(self.id_list) //
self.nranks:(self.local_rank + 1) * len(
self.id_list) // self.nranks]
if self.sample_method == "id_avg_prob":
id_batch_num = len(id_list) * self.sample_per_id // self.batch_size
if id_batch_num < len(self):
id_list = id_list * (len(self) // id_batch_num + 1)
id_list = id_list[0:len(self)]
id_per_batch = self.batch_size // self.sample_per_id
np.random.RandomState(self.epoch).shuffle(self.label_list)
for i in range(len(self)):
batch_index = []
for label_id in id_list[i * id_per_batch:(i + 1) * id_per_batch]:
idx_label_list = self.label_dict[label_id]
if self.sample_per_id <= len(idx_label_list):
batch_label_list = np.random.sample(
self.label_list,
size=label_per_batch,
replace=False,
p=self.prob_list)
for label_i in batch_label_list:
label_i_indexes = self.label_dict[label_i]
if self.sample_per_label <= len(label_i_indexes):
batch_index.extend(
np.random.choice(
idx_label_list,
size=self.sample_per_id,
label_i_indexes,
size=self.sample_per_label,
replace=False))
else:
batch_index.extend(
np.random.choice(
idx_label_list,
size=self.sample_per_id,
label_i_indexes,
size=self.sample_per_label,
replace=True))
if not self.drop_last or len(batch_index) == self.batch_size:
yield batch_index
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册