Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
645a125c
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
1 年多 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
645a125c
编写于
4月 29, 2022
作者:
H
HydrogenSulfate
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine paper and code ref, and remove trailing spaces
上级
fea9522a
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
58 addition
and
16 deletion
+58
-16
ppcls/loss/deephashloss.py
ppcls/loss/deephashloss.py
+3
-0
ppcls/loss/googlenetloss.py
ppcls/loss/googlenetloss.py
+4
-2
ppcls/loss/msmloss.py
ppcls/loss/msmloss.py
+6
-4
ppcls/loss/npairsloss.py
ppcls/loss/npairsloss.py
+5
-0
ppcls/loss/pairwisecosface.py
ppcls/loss/pairwisecosface.py
+16
-7
ppcls/loss/rkdloss.py
ppcls/loss/rkdloss.py
+2
-0
ppcls/loss/supconloss.py
ppcls/loss/supconloss.py
+1
-0
ppcls/loss/trihardloss.py
ppcls/loss/trihardloss.py
+5
-3
ppcls/loss/triplet.py
ppcls/loss/triplet.py
+16
-0
未找到文件。
ppcls/loss/deephashloss.py
浏览文件 @
645a125c
...
...
@@ -20,6 +20,7 @@ class DSHSDLoss(nn.Layer):
"""
# DSHSD(IEEE ACCESS 2019)
# paper [Deep Supervised Hashing Based on Stable Distribution](https://ieeexplore.ieee.org/document/8648432/)
# code reference: https://github.com/swuxyj/DeepHash-pytorch/blob/master/DSHSD.py
"""
def
__init__
(
self
,
alpha
,
multi_label
=
False
):
...
...
@@ -62,6 +63,7 @@ class DSHSDLoss(nn.Layer):
class
LCDSHLoss
(
nn
.
Layer
):
"""
# paper [Locality-Constrained Deep Supervised Hashing for Image Retrieval](https://www.ijcai.org/Proceedings/2017/0499.pdf)
# code reference: https://github.com/swuxyj/DeepHash-pytorch/blob/master/LCDSH.py
"""
def
__init__
(
self
,
n_class
,
_lambda
):
...
...
@@ -100,6 +102,7 @@ class DCHLoss(paddle.nn.Layer):
"""
# paper [Deep Cauchy Hashing for Hamming Space Retrieval]
URL:(http://ise.thss.tsinghua.edu.cn/~mlong/doc/deep-cauchy-hashing-cvpr18.pdf)
# code reference: https://github.com/swuxyj/DeepHash-pytorch/blob/master/DCH.py
"""
def
__init__
(
self
,
gamma
,
_lambda
,
n_class
):
...
...
ppcls/loss/googlenetloss.py
浏览文件 @
645a125c
...
...
@@ -18,11 +18,13 @@ import paddle.nn.functional as F
class
GoogLeNetLoss
(
nn
.
Layer
):
"""
Cross entropy loss used after googlenet
reference paper: [https://arxiv.org/pdf/1409.4842v1.pdf](Going Deeper with Convolutions)
"""
def
__init__
(
self
,
epsilon
=
None
):
super
().
__init__
()
assert
(
epsilon
is
None
or
epsilon
<=
0
or
epsilon
>=
1
),
"googlenet is not support label_smooth"
assert
(
epsilon
is
None
or
epsilon
<=
0
or
epsilon
>=
1
),
"googlenet is not support label_smooth"
def
forward
(
self
,
inputs
,
label
):
input0
,
input1
,
input2
=
inputs
...
...
ppcls/loss/msmloss.py
浏览文件 @
645a125c
...
...
@@ -21,10 +21,12 @@ from .comfunc import rerange_index
class
MSMLoss
(
paddle
.
nn
.
Layer
):
"""
MSMLoss Loss, based on triplet loss. USE P * K samples.
paper : [Margin Sample Mining Loss: A Deep Learning Based Method for Person Re-identification](https://arxiv.org/pdf/1710.00478.pdf)
code reference: https://github.com/michuanhaohao/keras_reid/blob/master/reid_tripletcls.py
Margin Sample Mining Loss, based on triplet loss. USE P * K samples.
the batch size is fixed. Batch_size = P * K; but the K may vary between batches.
same label gather together
supported_metrics = [
'euclidean',
'sqeuclidean',
...
...
@@ -41,7 +43,7 @@ class MSMLoss(paddle.nn.Layer):
self
.
rerange_index
=
rerange_index
(
batch_size
,
samples_each_class
)
def
forward
(
self
,
input
,
target
=
None
):
#normalization
#normalization
features
=
input
[
"features"
]
features
=
self
.
_nomalize
(
features
)
samples_each_class
=
self
.
samples_each_class
...
...
@@ -53,7 +55,7 @@ class MSMLoss(paddle.nn.Layer):
features
,
axis
=
0
)
similary_matrix
=
paddle
.
sum
(
paddle
.
square
(
diffs
),
axis
=-
1
)
#rerange
#rerange
tmp
=
paddle
.
reshape
(
similary_matrix
,
shape
=
[
-
1
,
1
])
tmp
=
paddle
.
gather
(
tmp
,
index
=
rerange_index
)
similary_matrix
=
paddle
.
reshape
(
tmp
,
shape
=
[
-
1
,
self
.
batch_size
])
...
...
ppcls/loss/npairsloss.py
浏览文件 @
645a125c
...
...
@@ -5,6 +5,11 @@ import paddle
class
NpairsLoss
(
paddle
.
nn
.
Layer
):
"""Npair_loss_
paper [Improved deep metric learning with multi-class N-pair loss objective](https://dl.acm.org/doi/10.5555/3157096.3157304)
code reference: https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/losses/metric_learning/npairs_loss
"""
def
__init__
(
self
,
reg_lambda
=
0.01
):
super
(
NpairsLoss
,
self
).
__init__
()
self
.
reg_lambda
=
reg_lambda
...
...
ppcls/loss/pairwisecosface.py
浏览文件 @
645a125c
...
...
@@ -23,6 +23,11 @@ import paddle.nn.functional as F
class
PairwiseCosface
(
nn
.
Layer
):
"""
paper: Circle Loss: A Unified Perspective of Pair Similarity Optimization
code reference: https://github.com/leoluopy/circle-loss-demonstration/blob/main/circle_loss.py
"""
def
__init__
(
self
,
margin
,
gamma
):
super
(
PairwiseCosface
,
self
).
__init__
()
self
.
margin
=
margin
...
...
@@ -36,8 +41,10 @@ class PairwiseCosface(nn.Layer):
dist_mat
=
paddle
.
matmul
(
embedding
,
embedding
,
transpose_y
=
True
)
N
=
dist_mat
.
shape
[
0
]
is_pos
=
targets
.
reshape
([
N
,
1
]).
expand
([
N
,
N
]).
equal
(
paddle
.
t
(
targets
.
reshape
([
N
,
1
]).
expand
([
N
,
N
]))).
astype
(
'float'
)
is_neg
=
targets
.
reshape
([
N
,
1
]).
expand
([
N
,
N
]).
not_equal
(
paddle
.
t
(
targets
.
reshape
([
N
,
1
]).
expand
([
N
,
N
]))).
astype
(
'float'
)
is_pos
=
targets
.
reshape
([
N
,
1
]).
expand
([
N
,
N
]).
equal
(
paddle
.
t
(
targets
.
reshape
([
N
,
1
]).
expand
([
N
,
N
]))).
astype
(
'float'
)
is_neg
=
targets
.
reshape
([
N
,
1
]).
expand
([
N
,
N
]).
not_equal
(
paddle
.
t
(
targets
.
reshape
([
N
,
1
]).
expand
([
N
,
N
]))).
astype
(
'float'
)
# Mask scores related to itself
is_pos
=
is_pos
-
paddle
.
eye
(
N
,
N
)
...
...
@@ -46,10 +53,12 @@ class PairwiseCosface(nn.Layer):
s_n
=
dist_mat
*
is_neg
logit_p
=
-
self
.
gamma
*
s_p
+
(
-
99999999.
)
*
(
1
-
is_pos
)
logit_n
=
self
.
gamma
*
(
s_n
+
self
.
margin
)
+
(
-
99999999.
)
*
(
1
-
is_neg
)
loss
=
F
.
softplus
(
paddle
.
logsumexp
(
logit_p
,
axis
=
1
)
+
paddle
.
logsumexp
(
logit_n
,
axis
=
1
)).
mean
()
return
{
"PairwiseCosface"
:
loss
}
logit_n
=
self
.
gamma
*
(
s_n
+
self
.
margin
)
+
(
-
99999999.
)
*
(
1
-
is_neg
)
loss
=
F
.
softplus
(
paddle
.
logsumexp
(
logit_p
,
axis
=
1
)
+
paddle
.
logsumexp
(
logit_n
,
axis
=
1
)).
mean
()
return
{
"PairwiseCosface"
:
loss
}
ppcls/loss/rkdloss.py
浏览文件 @
645a125c
...
...
@@ -29,6 +29,7 @@ def pdist(e, squared=False, eps=1e-12):
class
RKdAngle
(
nn
.
Layer
):
# paper : [Relational Knowledge Distillation](https://arxiv.org/abs/1904.05068?context=cs.LG)
# reference: https://github.com/lenscloth/RKD/blob/master/metric/loss.py
def
__init__
(
self
,
target_size
=
None
):
super
().
__init__
()
...
...
@@ -64,6 +65,7 @@ class RKdAngle(nn.Layer):
class
RkdDistance
(
nn
.
Layer
):
# paper : [Relational Knowledge Distillation](https://arxiv.org/abs/1904.05068?context=cs.LG)
# reference: https://github.com/lenscloth/RKD/blob/master/metric/loss.py
def
__init__
(
self
,
eps
=
1e-12
,
target_size
=
1
):
super
().
__init__
()
...
...
ppcls/loss/supconloss.py
浏览文件 @
645a125c
...
...
@@ -4,6 +4,7 @@ from paddle import nn
class
SupConLoss
(
nn
.
Layer
):
"""Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf.
code reference: https://github.com/HobbitLong/SupContrast/blob/master/losses.py
It also supports the unsupervised contrastive loss in SimCLR"""
def
__init__
(
self
,
...
...
ppcls/loss/trihardloss.py
浏览文件 @
645a125c
...
...
@@ -22,10 +22,12 @@ from .comfunc import rerange_index
class
TriHardLoss
(
paddle
.
nn
.
Layer
):
"""
paper: In Defense of the Triplet Loss for Person Re-Identification
code reference: https://github.com/VisualComputingInstitute/triplet-reid/blob/master/loss.py
TriHard Loss, based on triplet loss. USE P * K samples.
the batch size is fixed. Batch_size = P * K; but the K may vary between batches.
same label gather together
supported_metrics = [
'euclidean',
'sqeuclidean',
...
...
@@ -45,7 +47,7 @@ class TriHardLoss(paddle.nn.Layer):
features
=
input
[
"features"
]
assert
(
self
.
batch_size
==
features
.
shape
[
0
])
#normalization
#normalization
features
=
self
.
_nomalize
(
features
)
samples_each_class
=
self
.
samples_each_class
rerange_index
=
paddle
.
to_tensor
(
self
.
rerange_index
)
...
...
@@ -56,7 +58,7 @@ class TriHardLoss(paddle.nn.Layer):
features
,
axis
=
0
)
similary_matrix
=
paddle
.
sum
(
paddle
.
square
(
diffs
),
axis
=-
1
)
#rerange
#rerange
tmp
=
paddle
.
reshape
(
similary_matrix
,
shape
=
[
-
1
,
1
])
tmp
=
paddle
.
gather
(
tmp
,
index
=
rerange_index
)
similary_matrix
=
paddle
.
reshape
(
tmp
,
shape
=
[
-
1
,
self
.
batch_size
])
...
...
ppcls/loss/triplet.py
浏览文件 @
645a125c
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
...
...
@@ -8,6 +22,8 @@ import paddle.nn as nn
class
TripletLossV2
(
nn
.
Layer
):
"""Triplet loss with hard positive/negative mining.
paper : [Facenet: A unified embedding for face recognition and clustering](https://arxiv.org/pdf/1503.03832.pdf)
code reference: https://github.com/okzhili/Cartoon-face-recognition/blob/master/loss/triplet_loss.py
Args:
margin (float): margin for triplet.
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录