Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
644124ba
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
644124ba
编写于
3月 02, 2022
作者:
G
gaotingquan
提交者:
Tingquan Gao
3月 04, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
docs: fix link
上级
0e110d44
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
102 addition
and
104 deletion
+102
-104
docs/en/algorithm_introduction/ImageNet_models_en.md
docs/en/algorithm_introduction/ImageNet_models_en.md
+4
-4
docs/en/models/models_intro_en.md
docs/en/models/models_intro_en.md
+49
-50
docs/zh_CN/models/models_intro.md
docs/zh_CN/models/models_intro.md
+49
-50
未找到文件。
docs/en/algorithm_introduction/ImageNet_models_en.md
浏览文件 @
644124ba
...
...
@@ -63,7 +63,7 @@ Accuracy and inference time of the prtrained models based on SSLD distillation a
| Model | Top-1 Acc | Reference
<br>
Top-1 Acc | Acc gain | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | Pretrained Model Download Address | Inference Model Download Address |
|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------|-----------------------------------|-----------------------------------|
| ResNet34_vd_ssld | 0.797 | 0.760 | 0.037 | 2.00 | 3.28 | 5.84 | 3.93 | 21.84 |
<span
style=
"white-space:nowrap;"
>
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams
)
  
</span>
|
<span
style=
"white-space:nowrap;"
>
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_vd_ssld.tar
)
  
</span>
|
| ResNet34_vd_ssld | 0.797 | 0.760 | 0.037 | 2.00 | 3.28 | 5.84 | 3.93 | 21.84 |
<span
style=
"white-space:nowrap;"
>
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams
)
  
</span>
|
<span
style=
"white-space:nowrap;"
>
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_vd_ssld
_infer
.tar
)
  
</span>
|
| ResNet50_vd_ssld | 0.830 | 0.792 | 0.039 | 2.60 | 4.86 | 7.63 | 4.35 | 25.63 |
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams
)
|
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_ssld_infer.tar
)
|
| ResNet101_vd_ssld | 0.837 | 0.802 | 0.035 | 4.43 | 8.25 | 12.60 | 8.08 | 44.67 |
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams
)
|
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet101_vd_ssld_infer.tar
)
|
| Res2Net50_vd_26w_4s_ssld | 0.831 | 0.798 | 0.033 | 3.59 | 6.35 | 9.50 | 4.28 | 25.76 |
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_ssld_pretrained.pdparams
)
|
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_vd_26w_4s_ssld_infer.tar
)
|
...
...
@@ -408,8 +408,8 @@ The accuracy and speed indicators of SwinTransformer series models are shown in
| SwinTransformer_base_patch4_window12_384 | 0.8439 | 0.9693 | 19.52 | 64.56 | 123.30 | 44.45 | 87.70 |
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_pretrained.pdparams
)
|
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window12_384_infer.tar
)
|
| SwinTransformer_base_patch4_window7_224
<sup>
[
1]</sup> | 0.8487 | 0.9746 | 13.53 | 23.46 | 39.13 | 15.13 | 87.70 | [Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22kto1k_pretrained.pdparams
)
|
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window7_224_infer.tar
)
|
| SwinTransformer_base_patch4_window12_384
<sup>
[
1]</sup> | 0.8642 | 0.9807 | 19.65 | 64.72 | 123.42 | 44.45 | 87.70 | [Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_22kto1k_pretrained.pdparams
)
|
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window12_384_infer.tar
)
|
| SwinTransformer_large_patch4_window7_224
<sup>
[
1]</sup> | 0.8596 | 0.9783 | 15.74 | 38.57 | 71.49 | 34.02 | 196.43 | [Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams
)
|
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window7_224_infer.tar
)
|
| SwinTransformer_large_patch4_window12_384
<sup>
[
1]</sup> | 0.8719 | 0.9823 | 32.61 | 116.59 | 223.23 | 99.97 | 196.43 | [Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams
)
|
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window12_384_infer.tar
)
|
| SwinTransformer_large_patch4_window7_224
<sup>
[
1]</sup> | 0.8596 | 0.9783 | 15.74 | 38.57 | 71.49 | 34.02 | 196.43 | [Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams
)
|
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window7_224_
22kto1k_
infer.tar
)
|
| SwinTransformer_large_patch4_window12_384
<sup>
[
1]</sup> | 0.8719 | 0.9823 | 32.61 | 116.59 | 223.23 | 99.97 | 196.43 | [Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams
)
|
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window12_384_
22kto1k_
infer.tar
)
|
[1]:It is pre-trained based on the ImageNet22k dataset, and then transferred and learned from the ImageNet1k dataset.
...
...
@@ -421,7 +421,7 @@ The accuracy and speed indicators of LeViT series models are shown in the follow
| Model | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(M) | Params(M) | Pretrained Model Download Address | Inference Model Download Address |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| LeViT_128S | 0.7598 | 0.9269 | | | | 281 | 7.42 |
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128S_pretrained.pdparams
)
|
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/eViT_128S_infer.tar
)
|
| LeViT_128S | 0.7598 | 0.9269 | | | | 281 | 7.42 |
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128S_pretrained.pdparams
)
|
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/
L
eViT_128S_infer.tar
)
|
| LeViT_128 | 0.7810 | 0.9371 | | | | 365 | 8.87 |
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128_pretrained.pdparams
)
|
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_128_infer.tar
)
|
| LeViT_192 | 0.7934 | 0.9446 | | | | 597 | 10.61 |
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_192_pretrained.pdparams
)
|
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_192_infer.tar
)
|
| LeViT_256 | 0.8085 | 0.9497 | | | | 1049 | 18.45 |
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_256_pretrained.pdparams
)
|
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_256_infer.tar
)
|
...
...
docs/en/models/models_intro_en.md
浏览文件 @
644124ba
...
...
@@ -39,42 +39,41 @@ python tools/infer/predict.py \
## Pretrained model list and download address
-
ResNet and ResNet_vd series
-
ResNet series
<sup>
[
[1
](
#ref1
)
]
</sup>
(
[
paper link
](
http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
)
)
-
[
ResNet18
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_pretrained.pdparams
)
-
[
ResNet34
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_pretrained.pdparams
)
-
[
ResNet50
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_pretrained.pdparams
)
-
[
ResNet101
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_pretrained.pdparams
)
-
[
ResNet152
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet152_pretrained.pdparams
)
-
[
ResNet18
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
ResNet18_pretrained.pdparams
)
-
[
ResNet34
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
ResNet34_pretrained.pdparams
)
-
[
ResNet50
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
ResNet50_pretrained.pdparams
)
-
[
ResNet101
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
ResNet101_pretrained.pdparams
)
-
[
ResNet152
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
ResNet152_pretrained.pdparams
)
-
ResNet_vc、ResNet_vd series
<sup>
[
[2
](
#ref2
)
]
</sup>
(
[
paper link
](
https://arxiv.org/abs/1812.01187
)
)
-
[
ResNet50_vc
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vc_pretrained.pdparams
)
-
[
ResNet18_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_vd_pretrained.pdparams
)
-
[
ResNet34_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_vd_pretrained.pdparams
)
-
[
ResNet34_vd_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_vd_ssld_pretrained.pdparams
)
-
[
ResNet50_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams
)
-
[
ResNet50_vd_v2
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_v2_pretrained.pdparams
)
-
[
ResNet101_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_vd_pretrained.pdparams
)
-
[
ResNet152_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet152_vd_pretrained.pdparams
)
-
[
ResNet200_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet200_vd_pretrained.pdparams
)
-
[
ResNet50_vd_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams
)
-
[
ResNet18_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_vd_pretrained.pdparams
)
-
[
ResNet34_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_pretrained.pdparams
)
-
[
ResNet34_vd_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams
)
-
[
ResNet50_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams
)
-
[
ResNet101_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_pretrained.pdparams
)
-
[
ResNet152_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_vd_pretrained.pdparams
)
-
[
ResNet200_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet200_vd_pretrained.pdparams
)
-
[
ResNet50_vd_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams
)
-
[
ResNet50_vd_ssld_v2
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_v2_pretrained.pdparams
)
-
[
Fix_ResNet50_vd_ssld_v2
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Fix_ResNet50_vd_ssld_v2_pretrained.pdparams
)
-
[
ResNet101_vd_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_vd_ssld_pretrained.pdparams
)
-
[
ResNet101_vd_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
ResNet101_vd_ssld_pretrained.pdparams
)
-
Mobile and Embedded Vision Applications Network series
-
MobileNetV3 series
<sup>
[
[3
](
#ref3
)
]
</sup>
(
[
paper link
](
https://arxiv.org/abs/1905.02244
)
)
-
[
MobileNetV3_large_x0_35
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_35_pretrained.pdparams
)
-
[
MobileNetV3_large_x0_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
)
-
[
MobileNetV3_large_x0_75
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_75_pretrained.pdparams
)
-
[
MobileNetV3_large_x1_0
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_0_pretrained.pdparams
)
-
[
MobileNetV3_large_x1_25
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_25_pretrained.pdparams
)
-
[
MobileNetV3_small_x0_35
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_35_pretrained.pdparams
)
-
[
MobileNetV3_small_x0_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_5_pretrained.pdparams
)
-
[
MobileNetV3_small_x0_75
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_75_pretrained.pdparams
)
-
[
MobileNetV3_small_x1_0
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_0_pretrained.pdparams
)
-
[
MobileNetV3_small_x1_25
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_25_pretrained.pdparams
)
-
[
MobileNetV3_large_x1_0_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_0_ssld_pretrained.pdparams
)
-
[
MobileNetV3_large_x0_35
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV3_large_x0_35_pretrained.pdparams
)
-
[
MobileNetV3_large_x0_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV3_large_x0_5_pretrained.pdparams
)
-
[
MobileNetV3_large_x0_75
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV3_large_x0_75_pretrained.pdparams
)
-
[
MobileNetV3_large_x1_0
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV3_large_x1_0_pretrained.pdparams
)
-
[
MobileNetV3_large_x1_25
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV3_large_x1_25_pretrained.pdparams
)
-
[
MobileNetV3_small_x0_35
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV3_small_x0_35_pretrained.pdparams
)
-
[
MobileNetV3_small_x0_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV3_small_x0_5_pretrained.pdparams
)
-
[
MobileNetV3_small_x0_75
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV3_small_x0_75_pretrained.pdparams
)
-
[
MobileNetV3_small_x1_0
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV3_small_x1_0_pretrained.pdparams
)
-
[
MobileNetV3_small_x1_25
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV3_small_x1_25_pretrained.pdparams
)
-
[
MobileNetV3_large_x1_0_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV3_large_x1_0_ssld_pretrained.pdparams
)
-
[
MobileNetV3_large_x1_0_ssld_int8
](
)(coming
soon)
-
[
MobileNetV3_small_x1_0_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_0_ssld_pretrained.pdparams
)
-
[
MobileNetV3_small_x1_0_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV3_small_x1_0_ssld_pretrained.pdparams
)
-
MobileNetV2 series
<sup>
[
[4
](
#ref4
)
]
</sup>
(
[
paper link
](
https://arxiv.org/abs/1801.04381
)
)
-
[
MobileNetV2_x0_25
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_25_pretrained.pdparams
)
-
[
MobileNetV2_x0_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_5_pretrained.pdparams
)
...
...
@@ -84,11 +83,11 @@ python tools/infer/predict.py \
-
[
MobileNetV2_x2_0
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x2_0_pretrained.pdparams
)
-
[
MobileNetV2_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams
)
-
MobileNetV1 series
<sup>
[
[5
](
#ref5
)
]
</sup>
(
[
paper link
](
https://arxiv.org/abs/1704.04861
)
)
-
[
MobileNetV1_x0_25
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_25_pretrained.pdparams
)
-
[
MobileNetV1_x0_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_5_pretrained.pdparams
)
-
[
MobileNetV1_x0_75
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_75_pretrained.pdparams
)
-
[
MobileNetV1
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_pretrained.pdparams
)
-
[
MobileNetV1_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_ssld_pretrained.pdparams
)
-
[
MobileNetV1_x0_25
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV1_x0_25_pretrained.pdparams
)
-
[
MobileNetV1_x0_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV1_x0_5_pretrained.pdparams
)
-
[
MobileNetV1_x0_75
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV1_x0_75_pretrained.pdparams
)
-
[
MobileNetV1
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV1_pretrained.pdparams
)
-
[
MobileNetV1_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV1_ssld_pretrained.pdparams
)
-
ShuffleNetV2 series
<sup>
[
[6
](
#ref6
)
]
</sup>
(
[
paper link
](
https://arxiv.org/abs/1807.11164
)
)
-
[
ShuffleNetV2_x0_25
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_25_pretrained.pdparams
)
-
[
ShuffleNetV2_x0_33
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_33_pretrained.pdparams
)
...
...
@@ -144,7 +143,7 @@ python tools/infer/predict.py \
-
GoogLeNet series
<sup>
[
[10
](
#ref10
)
]
</sup>
(
[
paper link
](
https://arxiv.org/pdf/1409.4842.pdf
)
)
-
[
GoogLeNet
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GoogLeNet_pretrained.pdparams
)
-
InceptionV3 series
<sup>
[
[26
](
#ref26
)
]
</sup>
(
[
paper link
](
https://arxiv.org/abs/1512.00567
)
)
-
[
InceptionV3
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV3_pretrained.pdparams
)
-
[
InceptionV3
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
InceptionV3_pretrained.pdparams
)
-
InceptionV4 series
<sup>
[
[11
](
#ref11
)
]
</sup>
(
[
paper link
](
https://arxiv.org/abs/1602.07261
)
)
-
[
InceptionV4
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV4_pretrained.pdparams
)
-
Xception series
<sup>
[
[12
](
#ref12
)
]
</sup>
(
[
paper link
](
http://openaccess.thecvf.com/content_cvpr_2017/html/Chollet_Xception_Deep_Learning_CVPR_2017_paper.html
)
)
...
...
@@ -157,16 +156,16 @@ python tools/infer/predict.py \
-
HRNet series
-
HRNet series
<sup>
[
[13
](
#ref13
)
]
</sup>
(
[
paper link
](
https://arxiv.org/abs/1908.07919
)
)
-
[
HRNet_W18_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W18_C_pretrained.pdparams
)
-
[
HRNet_W18_C_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W18_C_ssld_pretrained.pdparams
)
-
[
HRNet_W30_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W30_C_pretrained.pdparams
)
-
[
HRNet_W32_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W32_C_pretrained.pdparams
)
-
[
HRNet_W40_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W40_C_pretrained.pdparams
)
-
[
HRNet_W44_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W44_C_pretrained.pdparams
)
-
[
HRNet_W48_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W48_C_pretrained.pdparams
)
-
[
HRNet_W48_C_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W48_C_ssld_pretrained.pdparams
)
-
[
HRNet_W64_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W64_C_pretrained.pdparams
)
-
[
SE_HRNet_W64_C_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_HRNet_W64_C_ssld_pretrained.pdparams
)
-
[
HRNet_W18_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
HRNet_W18_C_pretrained.pdparams
)
-
[
HRNet_W18_C_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
HRNet_W18_C_ssld_pretrained.pdparams
)
-
[
HRNet_W30_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
HRNet_W30_C_pretrained.pdparams
)
-
[
HRNet_W32_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
HRNet_W32_C_pretrained.pdparams
)
-
[
HRNet_W40_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
HRNet_W40_C_pretrained.pdparams
)
-
[
HRNet_W44_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
HRNet_W44_C_pretrained.pdparams
)
-
[
HRNet_W48_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
HRNet_W48_C_pretrained.pdparams
)
-
[
HRNet_W48_C_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
HRNet_W48_C_ssld_pretrained.pdparams
)
-
[
HRNet_W64_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
HRNet_W64_C_pretrained.pdparams
)
-
[
SE_HRNet_W64_C_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
SE_HRNet_W64_C_ssld_pretrained.pdparams
)
-
DPN and DenseNet series
...
...
@@ -218,11 +217,11 @@ python tools/infer/predict.py \
-
[
SwinTransformer_small_patch4_window7_224
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_small_patch4_window7_224_pretrained.pdparams
)
-
[
SwinTransformer_base_patch4_window7_224
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_pretrained.pdparams
)
-
[
SwinTransformer_base_patch4_window12_384
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_pretrained.pdparams
)
-
[
SwinTransformer_base_patch4_window7_224_22k
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22k_pretrained.pdparams
)
-
[
SwinTransformer_base_patch4_window7_224_22k
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22k
to1k
_pretrained.pdparams
)
-
[
SwinTransformer_base_patch4_window7_224_22kto1k
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22kto1k_pretrained.pdparams
)
-
[
SwinTransformer_large_patch4_window12_384_22k
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22k_pretrained.pdparams
)
-
[
SwinTransformer_large_patch4_window12_384_22k
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22k
to1k
_pretrained.pdparams
)
-
[
SwinTransformer_large_patch4_window12_384_22kto1k
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams
)
-
[
SwinTransformer_large_patch4_window7_224_22k
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22k_pretrained.pdparams
)
-
[
SwinTransformer_large_patch4_window7_224_22k
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22k
to1k
_pretrained.pdparams
)
-
[
SwinTransformer_large_patch4_window7_224_22kto1k
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams
)
...
...
@@ -234,10 +233,10 @@ python tools/infer/predict.py \
-
[
SqueezeNet1_0
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_0_pretrained.pdparams
)
-
[
SqueezeNet1_1
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_1_pretrained.pdparams
)
-
VGG series
<sup>
[
[20
](
#ref20
)
]
</sup>
(
[
paper link
](
https://arxiv.org/abs/1409.1556
)
)
-
[
VGG11
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG11_pretrained.pdparams
)
-
[
VGG13
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG13_pretrained.pdparams
)
-
[
VGG16
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG16_pretrained.pdparams
)
-
[
VGG19
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG19_pretrained.pdparams
)
-
[
VGG11
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
VGG11_pretrained.pdparams
)
-
[
VGG13
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
VGG13_pretrained.pdparams
)
-
[
VGG16
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
VGG16_pretrained.pdparams
)
-
[
VGG19
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
VGG19_pretrained.pdparams
)
-
DarkNet series
<sup>
[
[21
](
#ref21
)
]
</sup>
(
[
paper link
](
https://arxiv.org/abs/1506.02640
)
)
-
[
DarkNet53
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DarkNet53_pretrained.pdparams
)
...
...
docs/zh_CN/models/models_intro.md
浏览文件 @
644124ba
...
...
@@ -32,24 +32,23 @@
-
ResNet 及其 Vd 系列
-
ResNet 系列
<sup>
[
[1
](
#ref1
)
]
</sup>
(
[
论文地址
](
http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
)
)
-
[
ResNet18
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_pretrained.pdparams
)
-
[
ResNet34
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_pretrained.pdparams
)
-
[
ResNet50
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_pretrained.pdparams
)
-
[
ResNet101
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_pretrained.pdparams
)
-
[
ResNet152
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet152_pretrained.pdparams
)
-
[
ResNet18
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
ResNet18_pretrained.pdparams
)
-
[
ResNet34
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
ResNet34_pretrained.pdparams
)
-
[
ResNet50
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
ResNet50_pretrained.pdparams
)
-
[
ResNet101
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
ResNet101_pretrained.pdparams
)
-
[
ResNet152
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
ResNet152_pretrained.pdparams
)
-
ResNet_vc、ResNet_vd 系列
<sup>
[
[2
](
#ref2
)
]
</sup>
(
[
论文地址
](
https://arxiv.org/abs/1812.01187
)
)
-
[
ResNet50_vc
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vc_pretrained.pdparams
)
-
[
ResNet18_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_vd_pretrained.pdparams
)
-
[
ResNet34_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_vd_pretrained.pdparams
)
-
[
ResNet34_vd_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_vd_ssld_pretrained.pdparams
)
-
[
ResNet50_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams
)
-
[
ResNet50_vd_v2
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_v2_pretrained.pdparams
)
-
[
ResNet101_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_vd_pretrained.pdparams
)
-
[
ResNet152_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet152_vd_pretrained.pdparams
)
-
[
ResNet200_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet200_vd_pretrained.pdparams
)
-
[
ResNet50_vd_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams
)
-
[
ResNet18_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_vd_pretrained.pdparams
)
-
[
ResNet34_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_pretrained.pdparams
)
-
[
ResNet34_vd_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams
)
-
[
ResNet50_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams
)
-
[
ResNet101_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_pretrained.pdparams
)
-
[
ResNet152_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_vd_pretrained.pdparams
)
-
[
ResNet200_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet200_vd_pretrained.pdparams
)
-
[
ResNet50_vd_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams
)
-
[
Fix_ResNet50_vd_ssld_v2
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Fix_ResNet50_vd_ssld_v2_pretrained.pdparams
)
-
[
ResNet101_vd_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_vd_ssld_pretrained.pdparams
)
-
[
ResNet101_vd_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
ResNet101_vd_ssld_pretrained.pdparams
)
-
轻量级模型系列
...
...
@@ -66,19 +65,19 @@
-
[
PPLCNet_x1_0_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_ssld_pretrained.pdparams
)
-
[
PPLCNet_x2_5_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_ssld_pretrained.pdparams
)
-
MobileNetV3 系列
<sup>
[
[3
](
#ref3
)
]
</sup>
(
[
论文地址
](
https://arxiv.org/abs/1905.02244
)
)
-
[
MobileNetV3_large_x0_35
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_35_pretrained.pdparams
)
-
[
MobileNetV3_large_x0_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
)
-
[
MobileNetV3_large_x0_75
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_75_pretrained.pdparams
)
-
[
MobileNetV3_large_x1_0
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_0_pretrained.pdparams
)
-
[
MobileNetV3_large_x1_25
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_25_pretrained.pdparams
)
-
[
MobileNetV3_small_x0_35
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_35_pretrained.pdparams
)
-
[
MobileNetV3_small_x0_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_5_pretrained.pdparams
)
-
[
MobileNetV3_small_x0_75
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_75_pretrained.pdparams
)
-
[
MobileNetV3_small_x1_0
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_0_pretrained.pdparams
)
-
[
MobileNetV3_small_x1_25
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_25_pretrained.pdparams
)
-
[
MobileNetV3_large_x1_0_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_0_ssld_pretrained.pdparams
)
-
[
MobileNetV3_large_x0_35
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV3_large_x0_35_pretrained.pdparams
)
-
[
MobileNetV3_large_x0_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV3_large_x0_5_pretrained.pdparams
)
-
[
MobileNetV3_large_x0_75
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV3_large_x0_75_pretrained.pdparams
)
-
[
MobileNetV3_large_x1_0
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV3_large_x1_0_pretrained.pdparams
)
-
[
MobileNetV3_large_x1_25
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV3_large_x1_25_pretrained.pdparams
)
-
[
MobileNetV3_small_x0_35
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV3_small_x0_35_pretrained.pdparams
)
-
[
MobileNetV3_small_x0_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV3_small_x0_5_pretrained.pdparams
)
-
[
MobileNetV3_small_x0_75
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV3_small_x0_75_pretrained.pdparams
)
-
[
MobileNetV3_small_x1_0
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV3_small_x1_0_pretrained.pdparams
)
-
[
MobileNetV3_small_x1_25
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV3_small_x1_25_pretrained.pdparams
)
-
[
MobileNetV3_large_x1_0_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV3_large_x1_0_ssld_pretrained.pdparams
)
-
[
MobileNetV3_large_x1_0_ssld_int8
](
)(coming
soon)
-
[
MobileNetV3_small_x1_0_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_0_ssld_pretrained.pdparams
)
-
[
MobileNetV3_small_x1_0_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV3_small_x1_0_ssld_pretrained.pdparams
)
-
MobileNetV2 系列
<sup>
[
[4
](
#ref4
)
]
</sup>
(
[
论文地址
](
https://arxiv.org/abs/1801.04381
)
)
-
[
MobileNetV2_x0_25
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_25_pretrained.pdparams
)
-
[
MobileNetV2_x0_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_5_pretrained.pdparams
)
...
...
@@ -88,11 +87,11 @@
-
[
MobileNetV2_x2_0
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x2_0_pretrained.pdparams
)
-
[
MobileNetV2_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams
)
-
MobileNetV1 系列
<sup>
[
[5
](
#ref5
)
]
</sup>
(
[
论文地址
](
https://arxiv.org/abs/1704.04861
)
)
-
[
MobileNetV1_x0_25
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_25_pretrained.pdparams
)
-
[
MobileNetV1_x0_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_5_pretrained.pdparams
)
-
[
MobileNetV1_x0_75
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_75_pretrained.pdparams
)
-
[
MobileNetV1
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_pretrained.pdparams
)
-
[
MobileNetV1_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_ssld_pretrained.pdparams
)
-
[
MobileNetV1_x0_25
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV1_x0_25_pretrained.pdparams
)
-
[
MobileNetV1_x0_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV1_x0_5_pretrained.pdparams
)
-
[
MobileNetV1_x0_75
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV1_x0_75_pretrained.pdparams
)
-
[
MobileNetV1
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV1_pretrained.pdparams
)
-
[
MobileNetV1_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
MobileNetV1_ssld_pretrained.pdparams
)
-
ShuffleNetV2 系列
<sup>
[
[6
](
#ref6
)
]
</sup>
(
[
论文地址
](
https://arxiv.org/abs/1807.11164
)
)
-
[
ShuffleNetV2_x0_25
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_25_pretrained.pdparams
)
-
[
ShuffleNetV2_x0_33
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_33_pretrained.pdparams
)
...
...
@@ -158,7 +157,7 @@
-
GoogLeNet 系列
<sup>
[
[10
](
#ref10
)
]
</sup>
(
[
论文地址
](
https://arxiv.org/pdf/1409.4842.pdf
)
)
-
[
GoogLeNet
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GoogLeNet_pretrained.pdparams
)
-
InceptionV3 系列
<sup>
[
[26
](
#ref26
)
]
</sup>
(
[
论文地址
](
https://arxiv.org/abs/1512.00567
)
)
-
[
InceptionV3
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV3_pretrained.pdparams
)
-
[
InceptionV3
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
InceptionV3_pretrained.pdparams
)
-
InceptionV4 系列
<sup>
[
[11
](
#ref11
)
]
</sup>
(
[
论文地址
](
https://arxiv.org/abs/1602.07261
)
)
-
[
InceptionV4
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV4_pretrained.pdparams
)
-
Xception 系列
<sup>
[
[12
](
#ref12
)
]
</sup>
(
[
论文地址
](
http://openaccess.thecvf.com/content_cvpr_2017/html/Chollet_Xception_Deep_Learning_CVPR_2017_paper.html
)
)
...
...
@@ -171,16 +170,16 @@
-
HRNet 系列
-
HRNet 系列
<sup>
[
[13
](
#ref13
)
]
</sup>
(
[
论文地址
](
https://arxiv.org/abs/1908.07919
)
)
-
[
HRNet_W18_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W18_C_pretrained.pdparams
)
-
[
HRNet_W18_C_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W18_C_ssld_pretrained.pdparams
)
-
[
HRNet_W30_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W30_C_pretrained.pdparams
)
-
[
HRNet_W32_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W32_C_pretrained.pdparams
)
-
[
HRNet_W40_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W40_C_pretrained.pdparams
)
-
[
HRNet_W44_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W44_C_pretrained.pdparams
)
-
[
HRNet_W48_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W48_C_pretrained.pdparams
)
-
[
HRNet_W48_C_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W48_C_ssld_pretrained.pdparams
)
-
[
HRNet_W64_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W64_C_pretrained.pdparams
)
-
[
SE_HRNet_W64_C_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_HRNet_W64_C_ssld_pretrained.pdparams
)
-
[
HRNet_W18_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
HRNet_W18_C_pretrained.pdparams
)
-
[
HRNet_W18_C_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
HRNet_W18_C_ssld_pretrained.pdparams
)
-
[
HRNet_W30_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
HRNet_W30_C_pretrained.pdparams
)
-
[
HRNet_W32_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
HRNet_W32_C_pretrained.pdparams
)
-
[
HRNet_W40_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
HRNet_W40_C_pretrained.pdparams
)
-
[
HRNet_W44_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
HRNet_W44_C_pretrained.pdparams
)
-
[
HRNet_W48_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
HRNet_W48_C_pretrained.pdparams
)
-
[
HRNet_W48_C_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
HRNet_W48_C_ssld_pretrained.pdparams
)
-
[
HRNet_W64_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
HRNet_W64_C_pretrained.pdparams
)
-
[
SE_HRNet_W64_C_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
SE_HRNet_W64_C_ssld_pretrained.pdparams
)
-
DPN 与 DenseNet 系列
-
DPN 系列
<sup>
[
[14
](
#ref14
)
]
</sup>
(
[
论文地址
](
https://arxiv.org/abs/1707.01629
)
)
...
...
@@ -228,11 +227,11 @@
-
[
SwinTransformer_small_patch4_window7_224
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_small_patch4_window7_224_pretrained.pdparams
)
-
[
SwinTransformer_base_patch4_window7_224
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_pretrained.pdparams
)
-
[
SwinTransformer_base_patch4_window12_384
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_pretrained.pdparams
)
-
[
SwinTransformer_base_patch4_window7_224_22k
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22k_pretrained.pdparams
)
-
[
SwinTransformer_base_patch4_window7_224_22k
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22k
to1k
_pretrained.pdparams
)
-
[
SwinTransformer_base_patch4_window7_224_22kto1k
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22kto1k_pretrained.pdparams
)
-
[
SwinTransformer_large_patch4_window12_384_22k
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22k_pretrained.pdparams
)
-
[
SwinTransformer_large_patch4_window12_384_22k
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22k
to1k
_pretrained.pdparams
)
-
[
SwinTransformer_large_patch4_window12_384_22kto1k
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams
)
-
[
SwinTransformer_large_patch4_window7_224_22k
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22k_pretrained.pdparams
)
-
[
SwinTransformer_large_patch4_window7_224_22k
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22k
to1k
_pretrained.pdparams
)
-
[
SwinTransformer_large_patch4_window7_224_22kto1k
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams
)
-
ViT 系列
<sup>
[
[31
](
#ref31
)
]
</sup>
(
[
论文地址
](
https://arxiv.org/pdf/2010.11929.pdf
)
)
-
[
ViT_small_patch16_224
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_small_patch16_224_pretrained.pdparams
)
...
...
@@ -274,10 +273,10 @@
-
[
SqueezeNet1_0
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_0_pretrained.pdparams
)
-
[
SqueezeNet1_1
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_1_pretrained.pdparams
)
-
VGG 系列
<sup>
[
[20
](
#ref20
)
]
</sup>
(
[
论文地址
](
https://arxiv.org/abs/1409.1556
)
)
-
[
VGG11
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG11_pretrained.pdparams
)
-
[
VGG13
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG13_pretrained.pdparams
)
-
[
VGG16
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG16_pretrained.pdparams
)
-
[
VGG19
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG19_pretrained.pdparams
)
-
[
VGG11
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
VGG11_pretrained.pdparams
)
-
[
VGG13
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
VGG13_pretrained.pdparams
)
-
[
VGG16
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
VGG16_pretrained.pdparams
)
-
[
VGG19
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/
legendary_models/
VGG19_pretrained.pdparams
)
-
DarkNet 系列
<sup>
[
[21
](
#ref21
)
]
</sup>
(
[
论文地址
](
https://arxiv.org/abs/1506.02640
)
)
-
[
DarkNet53
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DarkNet53_pretrained.pdparams
)
-
RepVGG 系列
<sup>
[
[36
](
#ref36
)
]
</sup>
(
[
论文地址
](
https://arxiv.org/pdf/2101.03697.pdf
)
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录