提交 6432a7c4 编写于 作者: W weishengyu

Merge branch 'develop' into update_car_doc

include LICENSE.txt include LICENSE.txt
include README.md include README.md
include docs/en/whl_en.md include docs/en/whl_en.md
recursive-include deploy/python predict_cls.py preprocess.py postprocess.py det_preprocess.py recursive-include deploy/python *.py
recursive-include deploy/configs *.yaml
recursive-include deploy/utils get_image_list.py config.py logger.py predictor.py recursive-include deploy/utils get_image_list.py config.py logger.py predictor.py
recursive-include ppcls/ *.py *.txt recursive-include ppcls/ *.py *.txt
\ No newline at end of file
...@@ -4,39 +4,40 @@ ...@@ -4,39 +4,40 @@
## 简介 ## 简介
飞桨图像识别套件PaddleClas是飞桨为工业界和学术界所准备的一个图像识别任务的工具集,助力使用者训练出更好的视觉模型和应用落地。 飞桨图像识别套件PaddleClas是飞桨为工业界和学术界所准备的一个图像识别和图像分类任务的工具集,助力使用者训练出更好的视觉模型和应用落地。
**近期更新** <div align="center">
- 🔥️ 2022.5.26 [飞桨产业实践范例直播课](http://aglc.cn/v-c4FAR),解读**超轻量重点区域人员出入管理方案**,欢迎报名来交流。 <img src="./docs/images/class_simple.gif" width = "600" />
<div align="center">
<img src="https://user-images.githubusercontent.com/80816848/170166458-767a01ca-1429-437f-a628-dd184732ef53.png" width = "150" /> PULC实用图像分类模型效果展示
</div> </div>
&nbsp;
<div align="center">
<img src="./docs/images/recognition.gif" width = "400" />
PP-ShiTu图像识别系统效果展示
</div>
## 近期更新
- 🔥️ 2022.6.15 发布PULC超轻量图像分类方案,CPU推理3ms,精度比肩SwinTransformer,覆盖人、车、OCR场景九大常见任务。
- 2022.5.26 [飞桨产业实践范例直播课](http://aglc.cn/v-c4FAR),解读**超轻量重点区域人员出入管理方案**
- 2022.5.23 新增[人员出入管理范例库](https://aistudio.baidu.com/aistudio/projectdetail/4094475),具体内容可以在 AI Stuio 上体验。 - 2022.5.23 新增[人员出入管理范例库](https://aistudio.baidu.com/aistudio/projectdetail/4094475),具体内容可以在 AI Stuio 上体验。
- 2022.5.20 上线[PP-HGNet](./docs/zh_CN/models/PP-HGNet.md), [PP-LCNet v2](./docs/zh_CN/models/PP-LCNetV2.md) - 2022.5.20 上线[PP-HGNet](./docs/zh_CN/models/PP-HGNet.md), [PP-LCNet v2](./docs/zh_CN/models/PP-LCNetV2.md)
- 2022.4.21 新增 CVPR2022 oral论文 [MixFormer](https://arxiv.org/pdf/2204.02557.pdf) 相关[代码](https://github.com/PaddlePaddle/PaddleClas/pull/1820/files) - 2022.4.21 新增 CVPR2022 oral论文 [MixFormer](https://arxiv.org/pdf/2204.02557.pdf) 相关[代码](https://github.com/PaddlePaddle/PaddleClas/pull/1820/files)
- 2022.1.27 全面升级文档;新增[PaddleServing C++ pipeline部署方式](./deploy/paddleserving)[18M图像识别安卓部署Demo](./deploy/lite_shitu) - 2022.1.27 全面升级文档;新增[PaddleServing C++ pipeline部署方式](./deploy/paddleserving)[18M图像识别安卓部署Demo](./deploy/lite_shitu)
- 2021.11.1 发布[PP-ShiTu技术报告](https://arxiv.org/pdf/2111.00775.pdf),新增饮料识别demo - 2021.11.1 发布[PP-ShiTu技术报告](https://arxiv.org/pdf/2111.00775.pdf),新增饮料识别demo
- 2021.10.23 发布轻量级图像识别系统PP-ShiTu,CPU上0.2s即可完成在10w+库的图像识别。 - 2021.10.23 发布轻量级图像识别系统PP-ShiTu,CPU上0.2s即可完成在10w+库的图像识别。
[点击这里](./docs/zh_CN/quick_start/quick_start_recognition.md)立即体验 [点击这里](./docs/zh_CN/quick_start/quick_start_recognition.md)立即体验
- 2021.09.17 发布PP-LCNet系列超轻量骨干网络模型, 在Intel CPU上,单张图像预测速度约5ms,ImageNet-1K数据集上Top1识别准确率达到80.82%,超越ResNet152的模型效果。PP-LCNet的介绍可以参考[论文](https://arxiv.org/pdf/2109.15099.pdf), 或者[PP-LCNet模型介绍](docs/zh_CN/models/PP-LCNet.md),相关指标和预训练权重可以从 [这里](docs/zh_CN/algorithm_introduction/ImageNet_models.md)下载。 - 2021.09.17 发布PP-LCNet系列超轻量骨干网络模型, 在Intel CPU上,单张图像预测速度约5ms,ImageNet-1K数据集上Top1识别准确率达到80.82%,超越ResNet152的模型效果。PP-LCNet的介绍可以参考[论文](https://arxiv.org/pdf/2109.15099.pdf), 或者[PP-LCNet模型介绍](docs/zh_CN/models/PP-LCNet.md),相关指标和预训练权重可以从 [这里](docs/zh_CN/algorithm_introduction/ImageNet_models.md)下载。
- [more](./docs/zh_CN/others/update_history.md) - [more](./docs/zh_CN/others/update_history.md)
## 特性 ## 特性
- PP-ShiTu轻量图像识别系统:集成了目标检测、特征学习、图像检索等模块,广泛适用于各类图像识别任务。cpu上0.2s即可完成在10w+库的图像识别。 支持多种图像分类、识别相关算法,在此基础上打造[PULC超轻量图像分类方案](docs/zh_CN/PULC/PULC_person_exists.md)[PP-ShiTu图像识别系统](./docs/zh_CN/quick_start/quick_start_recognition.md)
![](https://user-images.githubusercontent.com/19523330/172844483-60391f39-f045-4e13-b5a6-ed65182f429e.png)
- PP-LCNet轻量级CPU骨干网络:专门为CPU设备打造轻量级骨干网络,速度、精度均远超竞品。
- 丰富的预训练模型库:提供了36个系列共175个ImageNet预训练模型,其中7个精选系列模型支持结构快速修改。
- 全面易用的特征学习组件:集成arcmargin, triplet loss等12度量学习方法,通过配置文件即可随意组合切换。
- SSLD知识蒸馏:14个分类预训练模型,精度普遍提升3%以上;其中ResNet50_vd模型在ImageNet-1k数据集上的Top-1精度达到了84.0%,
Res2Net200_vd预训练模型Top-1精度高达85.1%。
<div align="center">
<img src="./docs/images/recognition.gif" width = "400" />
</div>
## 欢迎加入技术交流群 ## 欢迎加入技术交流群
...@@ -50,73 +51,81 @@ Res2Net200_vd预训练模型Top-1精度高达85.1%。 ...@@ -50,73 +51,81 @@ Res2Net200_vd预训练模型Top-1精度高达85.1%。
## 快速体验 ## 快速体验
PP-ShiTu图像识别快速体验:[点击这里](./docs/zh_CN/quick_start/quick_start_recognition.md) PULC超轻量图像分类方案快速体验:[点击这里](docs/zh_CN/PULC/PULC_person_exists.md)
PP-ShiTu图像识别快速体验:[点击这里](./docs/zh_CN/quick_start/quick_start_recognition.md)
## 文档教程 ## 文档教程
- [环境准备]() - [环境准备](docs/zh_CN/installation/install_paddleclas.md)
- [PULC超轻量图像分类实用方案]() - PULC超轻量图像分类实用方案 文档更新中
- [超轻量图像分类快速体验 (@崔程)]() - 超轻量图像分类模型库 文档更新中
- [超轻量图像分类模型库](包含benchmark @崔程) - [PULC有人/无人分类模型](docs/zh_CN/PULC/PULC_person_exists.md)
- xx - PULC人体属性识别模型 文档更新中
- [方案介绍和模型训练]() - [PULC佩戴安全帽分类模型](docs/zh_CN/PULC/PULC_safety_helmet.md)
- [推理部署](@水龙) - [PULC交通标志分类模型](docs/zh_CN/PULC/PULC_traffic_sign.md)
- 基于python预测引擎推理 - [PULC车辆属性识别模型](docs/zh_CN/PULC/PULC_vehicle_attribute.md)
- 基于C++预测引擎推理 - PULC有车/无车分类模型 文档更新中
- 服务化部署 - [PULC含文字图像方向分类模型](docs/zh_CN/PULC/PULC_text_image_orientation.md)
- 端侧部署 - [PULC文本行方向分类模型](docs/zh_CN/PULC/PULC_textline_orientation.md)
- Paddle2ONNX模型转化与预测 - [PULC语种分类模型](docs/zh_CN/PULC/PULC_language_classification.md)
- [模型压缩](@崔程) - 模型训练 文档更新中
- 推理部署
- [基于python预测引擎推理](docs/zh_CN/inference_deployment/python_deploy.md#1)
- [基于C++预测引擎推理](docs/zh_CN/inference_deployment/cpp_deploy.md)
- [服务化部署](docs/zh_CN/inference_deployment/paddle_serving_deploy.md)
- [端侧部署](docs/zh_CN/inference_deployment/paddle_lite_deploy.md)
- [Paddle2ONNX模型转化与预测](deploy/paddle2onnx/readme.md)
- [模型压缩](deploy/slim/README.md)
- [PP-ShiTu图像识别系统介绍](#图像识别系统介绍) - [PP-ShiTu图像识别系统介绍](#图像识别系统介绍)
- 图像识别快速体验 - [图像识别快速体验](docs/zh_CN/quick_start/quick_start_recognition.md)
- 模块介绍 - 模块介绍
- [主体检测](./docs/zh_CN/image_recognition_pipeline/mainbody_detection.md) - [主体检测](./docs/zh_CN/image_recognition_pipeline/mainbody_detection.md)
- [特征提取模型](./docs/zh_CN/image_recognition_pipeline/feature_extraction.md) - [特征提取模型](./docs/zh_CN/image_recognition_pipeline/feature_extraction.md)
- [向量检索](./docs/zh_CN/image_recognition_pipeline/vector_search.md) - [向量检索](./docs/zh_CN/image_recognition_pipeline/vector_search.md)
- 哈希编码 - [哈希编码](docs/zh_CN/image_recognition_pipeline/)
- 模型训练(包含数据集格式说明等) - [模型训练](docs/zh_CN/models_training/recognition.md)
- 推理部署 - 推理部署
- 基于python预测引擎推理 - [基于python预测引擎推理](docs/zh_CN/inference_deployment/python_deploy.md#2)
- 基于C++预测引擎推理 - [基于C++预测引擎推理](deploy/cpp_shitu/readme.md)
- 服务化部署 - [服务化部署](docs/zh_CN/inference_deployment/paddle_serving_deploy.md)
- 端侧部署 - [端侧部署](deploy/lite_shitu/README.md)
- Paddle2ONNX模型转化与预测 - 模型压缩 文档更新中
- 模型压缩 - PP系列骨干网络模型
- 模型量化 - [PP-HGNet](docs/zh_CN/models/PP-HGNet.md)
- 模型裁剪 - [PP-LCNet v2](docs/zh_CN/models/PP-LCNetV2.md)
- [骨干网络和预训练模型库](./docs/zh_CN/algorithm_introduction/ImageNet_models.md) - [PP-LCNet](docs/zh_CN/models/PP-LCNet.md)
- PP系列骨干网络模型(包括算法介绍,使用,训推一体链接等)(@崔程) - [SSLD半监督知识蒸馏方案](docs/zh_CN/advanced_tutorials/ssld.md)
- PP-HGNet
- PP-LCNet v2
- PP-LCNet
- SSLD半监督知识蒸馏方案 (@若愚)
- SSLD算法简介
- 预训练模型库
- 使用方法(?)
- 前沿算法 - 前沿算法
- 骨干网络和预训练模型库 (@崔程) - [骨干网络和预训练模型库](docs/zh_CN/algorithm_introduction/ImageNet_models.md)
- 服务端CNN模型库 - [度量学习](docs/zh_CN/algorithm_introduction/metric_learning.md)
- 移动端CNN模型库 - ReID 文档更新中
- Vision Transformer模型库 - 向量检索 文档更新中
- 度量学习(arcmargin等算法)(@水龙) - 哈希特征 文档更新中
- ReID (@水龙) - [模型蒸馏](docs/zh_CN/algorithm_introduction/model_prune_quantization.md)
- 向量检索 (@水龙) - [数据增强](docs/zh_CN/advanced_tutorials/DataAugmentation.md)
- 哈希特征 (@水龙) - [产业实用范例库](docs/zh_CN/samples)
- 模型蒸馏 (@若愚) - [30分钟快速体验图像分类](docs/zh_CN/quick_start/quick_start_classification_new_user.md)
- 数据增强 (@崔程)
- 产业实用范例库 (@胜禹)
- 30分钟快速体验图像分类(原尝鲜版)(@崔程)
- FAQ - FAQ
- [图像识别精选问题](docs/zh_CN/faq_series/faq_2021_s2.md) - [图像识别精选问题](docs/zh_CN/faq_series/faq_2021_s2.md)
- [图像分类精选问题](docs/zh_CN/faq_series/faq_selected_30.md) - [图像分类精选问题](docs/zh_CN/faq_series/faq_selected_30.md)
- [图像分类FAQ第一季](docs/zh_CN/faq_series/faq_2020_s1.md) - [图像分类FAQ第一季](docs/zh_CN/faq_series/faq_2020_s1.md)
- [图像分类FAQ第二季](docs/zh_CN/faq_series/faq_2021_s1.md) - [图像分类FAQ第二季](docs/zh_CN/faq_series/faq_2021_s1.md)
- [PaddleClas结构解析](./docs/zh_CN/advanced_tutorials/code_overview.md) - PaddleClas结构解析 文档更新中
- [社区贡献指南](./docs/zh_CN/advanced_tutorials/how_to_contribute.md) - [社区贡献指南](./docs/zh_CN/advanced_tutorials/how_to_contribute.md)
- [许可证书](#许可证书) - [许可证书](#许可证书)
- [贡献代码](#贡献代码) - [贡献代码](#贡献代码)
<a name="PULC超轻量图像分类方案"></a>
## PULC超轻量图像分类方案
<div align="center">
<img src="https://user-images.githubusercontent.com/19523330/173011854-b10fcd7a-b799-4dfd-a1cf-9504952a3c44.png" width = "800" />
</div>
PULC融合了骨干网络、数据增广、蒸馏等多种前沿算法,可以自动训练得到轻量且高精度的图像分类模型。
PaddleClas提供了覆盖人、车、OCR场景九大常见任务的分类模型,CPU推理3ms,精度比肩SwinTransformer。
<a name="图像识别系统介绍"></a> <a name="图像识别系统介绍"></a>
## PP-ShiTu图像识别系统介绍 ## PP-ShiTu图像识别系统
<div align="center"> <div align="center">
<img src="./docs/images/structure.jpg" width = "800" /> <img src="./docs/images/structure.jpg" width = "800" />
...@@ -124,6 +133,11 @@ PP-ShiTu图像识别快速体验:[点击这里](./docs/zh_CN/quick_start/quick ...@@ -124,6 +133,11 @@ PP-ShiTu图像识别快速体验:[点击这里](./docs/zh_CN/quick_start/quick
PP-ShiTu是一个实用的轻量级通用图像识别系统,主要由主体检测、特征学习和向量检索三个模块组成。该系统从骨干网络选择和调整、损失函数的选择、数据增强、学习率变换策略、正则化参数选择、预训练模型使用以及模型裁剪量化8个方面,采用多种策略,对各个模块的模型进行优化,最终得到在CPU上仅0.2s即可完成10w+库的图像识别的系统。更多细节请参考[PP-ShiTu技术方案](https://arxiv.org/pdf/2111.00775.pdf) PP-ShiTu是一个实用的轻量级通用图像识别系统,主要由主体检测、特征学习和向量检索三个模块组成。该系统从骨干网络选择和调整、损失函数的选择、数据增强、学习率变换策略、正则化参数选择、预训练模型使用以及模型裁剪量化8个方面,采用多种策略,对各个模块的模型进行优化,最终得到在CPU上仅0.2s即可完成10w+库的图像识别的系统。更多细节请参考[PP-ShiTu技术方案](https://arxiv.org/pdf/2111.00775.pdf)
<a name="分类效果展示"></a>
## PULC实用图像分类模型效果展示
<div align="center">
<img src="docs/images/classification.gif">
</div>
<a name="识别效果展示"></a> <a name="识别效果展示"></a>
## PP-ShiTu图像识别系统效果展示 ## PP-ShiTu图像识别系统效果展示
......
Global:
infer_imgs: "./images/PULC/car_exists/objects365_00001507.jpeg"
inference_model_dir: "./models/car_exists_infer"
batch_size: 1
use_gpu: True
enable_mkldnn: False
cpu_num_threads: 10
enable_benchmark: True
use_fp16: False
ir_optim: True
use_tensorrt: False
gpu_mem: 8000
enable_profile: False
PreProcess:
transform_ops:
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 0.00392157
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
channel_num: 3
- ToCHWImage:
PostProcess:
main_indicator: ThreshOutput
ThreshOutput:
threshold: 0.5
label_0: nocar
label_1: contains_car
SavePreLabel:
save_dir: ./pre_label/
Global:
infer_imgs: "./images/PULC/language_classification/word_35404.png"
inference_model_dir: "./models/language_classification_infer"
batch_size: 1
use_gpu: True
enable_mkldnn: False
cpu_num_threads: 10
enable_benchmark: True
use_fp16: False
ir_optim: True
use_tensorrt: False
gpu_mem: 8000
enable_profile: False
PreProcess:
transform_ops:
- ResizeImage:
size: [160, 80]
- NormalizeImage:
scale: 0.00392157
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
channel_num: 3
- ToCHWImage:
PostProcess:
main_indicator: Topk
Topk:
topk: 2
class_id_map_file: "../dataset/language_classification/label_list.txt"
SavePreLabel:
save_dir: ./pre_label/
Global:
infer_imgs: "./images/PULC/person_attribute/090004.jpg"
inference_model_dir: "./models/person_attribute_infer"
batch_size: 1
use_gpu: True
enable_mkldnn: True
cpu_num_threads: 10
benchmark: False
use_fp16: False
ir_optim: True
use_tensorrt: False
gpu_mem: 8000
enable_profile: False
PreProcess:
transform_ops:
- ResizeImage:
size: [192, 256]
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
channel_num: 3
- ToCHWImage:
PostProcess:
main_indicator: PersonAttribute
PersonAttribute:
threshold: 0.5 #default threshold
glasses_threshold: 0.3 #threshold only for glasses
hold_threshold: 0.6 #threshold only for hold
Global:
infer_imgs: "./images/PULC/safety_helmet/safety_helmet_test_1.png"
inference_model_dir: "./models/safety_helmet_infer"
batch_size: 1
use_gpu: True
enable_mkldnn: False
cpu_num_threads: 10
enable_benchmark: True
use_fp16: False
ir_optim: True
use_tensorrt: False
gpu_mem: 8000
enable_profile: False
PreProcess:
transform_ops:
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 0.00392157
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
channel_num: 3
- ToCHWImage:
PostProcess:
main_indicator: ThreshOutput
ThreshOutput:
threshold: 0.5
label_0: wearing_helmet
label_1: unwearing_helmet
SavePreLabel:
save_dir: ./pre_label/
Global:
infer_imgs: "./images/PULC/text_image_orientation/img_rot0_demo.jpg"
inference_model_dir: "./models/text_image_orientation_infer"
batch_size: 1
use_gpu: True
enable_mkldnn: False
cpu_num_threads: 10
enable_benchmark: True
use_fp16: False
ir_optim: True
use_tensorrt: False
gpu_mem: 8000
enable_profile: False
PreProcess:
transform_ops:
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 0.00392157
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
channel_num: 3
- ToCHWImage:
PostProcess:
main_indicator: Topk
Topk:
topk: 2
class_id_map_file: "../dataset/text_image_orientation/label_list.txt"
SavePreLabel:
save_dir: ./pre_label/
Global:
infer_imgs: "./images/PULC/textline_orientation/textline_orientation_test_0_0.png"
inference_model_dir: "./models/textline_orientation_infer"
batch_size: 1
use_gpu: True
enable_mkldnn: True
cpu_num_threads: 10
enable_benchmark: True
use_fp16: False
ir_optim: True
use_tensorrt: False
gpu_mem: 8000
enable_profile: False
PreProcess:
transform_ops:
- ResizeImage:
size: [160, 80]
- NormalizeImage:
scale: 0.00392157
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
channel_num: 3
- ToCHWImage:
PostProcess:
main_indicator: Topk
Topk:
topk: 1
class_id_map_file: "../ppcls/utils/PULC/textline_orientation_label_list.txt"
SavePreLabel:
save_dir: ./pre_label/
...@@ -30,6 +30,6 @@ PostProcess: ...@@ -30,6 +30,6 @@ PostProcess:
main_indicator: Topk main_indicator: Topk
Topk: Topk:
topk: 5 topk: 5
class_id_map_file: "../dataset/traffic_sign/label_name_id.txt" class_id_map_file: "../ppcls/utils/PULC_label_list/traffic_sign_label_list.txt"
SavePreLabel: SavePreLabel:
save_dir: ./pre_label/ save_dir: ./pre_label/
Global: Global:
infer_imgs: "./images/PULC/vehicle_attr/0002_c002_00030670_0.jpg" infer_imgs: "./images/PULC/vehicle_attribute/0002_c002_00030670_0.jpg"
inference_model_dir: "./models/vehicle_attr_infer" inference_model_dir: "./models/vehicle_attribute_infer"
batch_size: 1 batch_size: 1
use_gpu: True use_gpu: True
enable_mkldnn: True enable_mkldnn: True
......
...@@ -25,9 +25,9 @@ PreProcess: ...@@ -25,9 +25,9 @@ PreProcess:
- ToCHWImage: - ToCHWImage:
PostProcess: PostProcess:
main_indicator: Attribute main_indicator: PersonAttribute
Attribute: PersonAttribute:
threshold: 0.5 #default threshold threshold: 0.5 #default threshold
glasses_threshold: 0.3 #threshold only for glasses glasses_threshold: 0.3 #threshold only for glasses
hold_threshold: 0.6 #threshold only for hold hold_threshold: 0.6 #threshold only for hold
\ No newline at end of file
...@@ -189,7 +189,7 @@ class Binarize(object): ...@@ -189,7 +189,7 @@ class Binarize(object):
return byte return byte
class Attribute(object): class PersonAttribute(object):
def __init__(self, def __init__(self,
threshold=0.5, threshold=0.5,
glasses_threshold=0.3, glasses_threshold=0.3,
...@@ -277,8 +277,7 @@ class Attribute(object): ...@@ -277,8 +277,7 @@ class Attribute(object):
threshold_list[18] = self.hold_threshold threshold_list[18] = self.hold_threshold
pred_res = (np.array(res) > np.array(threshold_list) pred_res = (np.array(res) > np.array(threshold_list)
).astype(np.int8).tolist() ).astype(np.int8).tolist()
batch_res.append({"attributes": label_res, "output": pred_res})
batch_res.append([label_res, pred_res])
return batch_res return batch_res
......
...@@ -138,7 +138,7 @@ def main(config): ...@@ -138,7 +138,7 @@ def main(config):
continue continue
batch_results = cls_predictor.predict(batch_imgs) batch_results = cls_predictor.predict(batch_imgs)
for number, result_dict in enumerate(batch_results): for number, result_dict in enumerate(batch_results):
if "Attribute" in config[ if "PersonAttribute" in config[
"PostProcess"] or "VehicleAttribute" in config[ "PostProcess"] or "VehicleAttribute" in config[
"PostProcess"]: "PostProcess"]:
filename = batch_names[number] filename = batch_names[number]
......
...@@ -212,14 +212,14 @@ You can save the prediction result(s) as pre-label, only need to use `pre_label_ ...@@ -212,14 +212,14 @@ You can save the prediction result(s) as pre-label, only need to use `pre_label_
```python ```python
from paddleclas import PaddleClas from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50', save_dir='./output_pre_label/') clas = PaddleClas(model_name='ResNet50', save_dir='./output_pre_label/')
infer_imgs = 'docs/images/inference_deployment/whl_' # it can be infer_imgs folder path which contains all of images you want to predict. infer_imgs = 'docs/images/' # it can be infer_imgs folder path which contains all of images you want to predict.
result=clas.predict(infer_imgs) result=clas.predict(infer_imgs)
print(next(result)) print(next(result))
``` ```
* CLI * CLI
```bash ```bash
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/inference_deployment/whl_' --save_dir='./output_pre_label/' paddleclas --model_name='ResNet50' --infer_imgs='docs/images/' --save_dir='./output_pre_label/'
``` ```
<a name="4.8"></a> <a name="4.8"></a>
......
此差异已折叠。
# PULC 人体属性识别模型
------
## 目录
- [1. 模型和应用场景介绍](#1)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [3.1 环境配置](#3.1)
- [3.2 数据准备](#3.2)
- [3.2.1 数据集来源](#3.2.1)
- [3.2.2 数据集获取](#3.2.2)
- [3.3 模型训练](#3.3)
- [3.4 模型评估](#3.4)
- [3.5 模型预测](#3.5)
- [4. 模型压缩](#4)
- [4.1 SKL-UGI 知识蒸馏](#4.1)
- [4.1.1 教师模型训练](#4.1.1)
- [4.1.2 蒸馏训练](#4.1.2)
- [5. 超参搜索](#5)
- [6. 模型推理部署](#6)
- [6.1 推理模型准备](#6.1)
- [6.1.1 基于训练得到的权重导出 inference 模型](#6.1.1)
- [6.1.2 直接下载 inference 模型](#6.1.2)
- [6.2 基于 Python 预测引擎推理](#6.2)
- [6.2.1 预测单张图像](#6.2.1)
- [6.2.2 基于文件夹的批量预测](#6.2.2)
- [6.3 基于 C++ 预测引擎推理](#6.3)
- [6.4 服务化部署](#6.4)
- [6.5 端侧部署](#6.5)
- [6.6 Paddle2ONNX 模型转换与预测](#6.6)
<a name="1"></a>
## 1. 模型和应用场景介绍
该案例提供了用户使用 PaddleClas 的超轻量图像分类方案(PULC,Practical Ultra Lightweight Classification)快速构建轻量级、高精度、可落地的人体属性识别模型。该模型可以广泛应用于行人分析、行人跟踪等场景。
下表列出了不同人体属性识别模型的相关指标,前两行展现了使用 SwinTransformer_tiny、Res2Net200_vd_26w_4s 和 MobileNetV3_small_x0_35 作为 backbone 训练得到的模型的相关指标,第三行至第六行依次展现了替换 backbone 为 PPLCNet_x1_0、使用 SSLD 预训练模型、使用 SSLD 预训练模型 + EDA 策略、使用 SSLD 预训练模型 + EDA 策略 + SKL-UGI 知识蒸馏策略训练得到的模型的相关指标。
| 模型 | ma(%) | 延时(ms) | 存储(M) | 策略 |
|-------|-----------|----------|---------------|---------------|
| Res2Net200_vd_26w_4s | 81.25 | 77.51 | 293 | 使用ImageNet预训练模型 |
| SwinTransformer_tiny | 80.17 | 89.51 | 107 | 使用ImageNet预训练模型 |
| MobileNetV3_small_x0_35 | 70.79 | 2.90 | 1.7 | 使用ImageNet预训练模型 |
| PPLCNet_x1_0 | 76.31 | 2.01 | 6.6 | 使用ImageNet预训练模型 |
| PPLCNet_x1_0 | 77.31 | 2.01 | 6.6 | 使用SSLD预训练模型 |
| PPLCNet_x1_0 | 77.71 | 2.01 | 6.6 | 使用SSLD预训练模型+EDA策略|
| <b>PPLCNet_x1_0<b> | <b>78.59<b> | <b>2.01<b> | <b>6.6<b> | 使用SSLD预训练模型+EDA策略+SKL-UGI知识蒸馏策略|
从表中可以看出,backbone 为 Res2Net200_vd_26w_4s 和 SwinTransformer_tiny 时精度较高,但是推理速度较慢。将 backbone 替换为轻量级模型 MobileNetV3_small_x0_35 后,速度可以大幅提升,但是精度也大幅下降。将 backbone 替换为 PPLCNet_x1_0 时,精度较 MobileNetV3_small_x0_35 高 5.5%,于此同时,速度更快。在此基础上,使用 SSLD 预训练模型后,在不改变推理速度的前提下,精度可以提升 1%,进一步地,当融合EDA策略后,精度可以再提升 0.4%,最后,在使用 SKL-UGI 知识蒸馏后,精度可以继续提升 0.88%。此时,PPLCNet_x1_0 的精度与 SwinTransformer_tiny 仅相差1.58%,但是速度快 44 倍。关于 PULC 的训练方法和推理部署方法将在下面详细介绍。
**备注:**
* 关于PPLCNet的介绍可以参考[PPLCNet介绍](../models/PP-LCNet.md),相关论文可以查阅[PPLCNet paper](https://arxiv.org/abs/2109.15099)
<a name="2"></a>
## 2. 模型快速体验
<a name="2"></a>
## 2. 模型快速体验
<a name="2.1"></a>
### 2.1 安装 paddleclas
使用如下命令快速安装 paddlepaddle, paddleclas
```
pip3 install paddlepaddle paddleclas
```
<a name="2.2"></a>
### 2.2 预测
* 使用命令行快速预测
```bash
paddleclas --model_name=person_attribute --infer_imgs=deploy/images/PULC/person_attribute/090004.jpg
```
结果如下:
```
>>> result
待补充
```
**备注**: 更换其他预测的数据时,只需要改变 `--infer_imgs=xx` 中的字段即可,支持传入整个文件夹。
* 在 Python 代码中预测
```python
import paddleclas
model = paddleclas.PaddleClas(model_name="person_attribute")
result = model.predict(input_data="deploy/images/PULC/person_attribute/090004.jpg")
print(next(result))
```
**备注**`model.predict()` 为可迭代对象(`generator`),因此需要使用 `next()` 函数或 `for` 循环对其迭代调用。每次调用将以 `batch_size` 为单位进行一次预测,并返回预测结果, 默认 `batch_size` 为 1,如果需要更改 `batch_size`,实例化模型时,需要指定 `batch_size`,如 `model = paddleclas.PaddleClas(model_name="person_attribute", batch_size=2)`, 使用默认的代码返回结果示例如下:
```
>>> result
待补充
```
<a name="3"></a>
## 3. 模型训练、评估和预测
<a name="3.1"></a>
### 3.1 环境配置
* 安装:请先参考文档 [环境准备](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。
<a name="3.2"></a>
### 3.2 数据准备
<a name="3.2.1"></a>
#### 3.2.1 数据集来源
本案例中所使用的数据为[pa100k 数据集](https://www.v7labs.com/open-datasets/pa-100k)
<a name="3.2.2"></a>
#### 3.2.2 数据集获取
部分数据可视化如下所示。
<div align="center">
<img src="../../images/PULC/docs/person_attribute_data_demo.png" width = "500" />
</div>
我们将原始数据转换成了 PaddleClas 多标签可读的数据格式,可以直接下载。
进入 PaddleClas 目录。
```
cd path_to_PaddleClas
```
进入 `dataset/` 目录,下载并解压有人/无人场景的数据。
```shell
cd dataset
wget https://paddleclas.bj.bcebos.com/data/PULC/pa100k.tar
tar -xf pa100k.tar
cd ../
```
执行上述命令后,`dataset/` 下存在 `pa100k` 目录,该目录中具有以下数据:
执行上述命令后,`pa100k`目录中具有以下数据:
```
pa100k
├── train
│   ├── 000001.jpg
│   ├── 000002.jpg
...
├── val
│   ├── 080001.jpg
│   ├── 080002.jpg
...
├── test
│   ├── 090001.jpg
│   ├── 090002.jpg
...
...
├── train_list.txt
├── train_val_list.txt
├── val_list.txt
├── test_list.txt
```
其中`train/``val/``test/`分别为训练集、验证集和测试集。`train_list.txt``val_list.txt``test_list.txt`分别为训练集、验证集、测试集的标签文件。在本例子中,`test_list.txt`暂时没有使用。
<a name="3.3"></a>
### 3.3 模型训练
`ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml` 中提供了基于该场景的训练配置,可以通过如下脚本启动训练:
```shell
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml
```
验证集的最佳指标在 `90.07%` 左右(数据集较小,一般有0.3%左右的波动)。
<a name="3.4"></a>
### 3.4 模型评估
训练好模型之后,可以通过以下命令实现对模型指标的评估。
```bash
python3 tools/eval.py \
-c ./ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml \
-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"
```
其中 `-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。
<a name="3.5"></a>
### 3.5 模型预测
模型训练完成之后,可以加载训练得到的预训练模型,进行模型预测。在模型库的 `tools/infer.py` 中提供了完整的示例,只需执行下述命令即可完成模型预测:
```bash
python3 tools/infer.py \
-c ./ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=output/PPLCNet_x1_0/best_model
```
输出结果如下:
```
[{'attributes': ['Male', 'Age18-60', 'Back', 'Glasses: False', 'Hat: False', 'HoldObjectsInFront: False', 'Backpack', 'Upper: LongSleeve UpperPlaid', 'Lower: Trousers', 'No boots'], 'output': [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1]}]
```
**备注:**
* 这里`-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。
* 默认是对 `deploy/images/PULC/person_attribute/090004.jpg` 进行预测,此处也可以通过增加字段 `-o Infer.infer_imgs=xxx` 对其他图片预测。
<a name="4"></a>
## 4. 模型压缩
<a name="4.1"></a>
### 4.1 SKL-UGI 知识蒸馏
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](@ruoyu)
<a name="4.1.1"></a>
#### 4.1.1 教师模型训练
复用 `ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml` 中的超参数,训练教师模型,训练脚本如下:
```shell
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml \
-o Arch.name=ResNet101_vd
```
验证集的最佳指标为 `80.10%` 左右,当前教师模型最好的权重保存在 `output/ResNet101_vd/best_model.pdparams`
<a name="4.1.2"></a>
#### 4.1.2 蒸馏训练
配置文件`ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_Distillation.yaml`提供了`SKL-UGI知识蒸馏策略`的配置。该配置将`ResNet101_vd`当作教师模型,`PPLCNet_x1_0`当作学生模型。训练脚本如下:
```shell
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_Distillation.yaml \
-o Arch.models.0.Teacher.pretrained=output/ResNet101_vd/best_model
```
验证集的最佳指标为 `78.5%` 左右,当前模型最好的权重保存在 `output/DistillationModel/best_model_student.pdparams`
<a name="5"></a>
## 5. 超参搜索
[3.2 节](#3.2)[4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `SHAS 超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[SHAS 超参数搜索策略](#TODO)来获得更好的训练超参数。
**备注:** 此部分内容是可选内容,搜索过程需要较长的时间,您可以根据自己的硬件情况来选择执行。如果没有更换数据集,可以忽略此节内容。
<a name="6"></a>
## 6. 模型推理部署
<a name="6.1"></a>
### 6.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
当使用 Paddle Inference 推理时,加载的模型类型为 inference 模型。本案例提供了两种获得 inference 模型的方法,如果希望得到和文档相同的结果,请选择[直接下载 inference 模型](#6.1.2)的方式。
<a name="6.1.1"></a>
### 6.1.1 基于训练得到的权重导出 inference 模型
此处,我们提供了将权重和模型转换的脚本,执行该脚本可以得到对应的 inference 模型:
```bash
python3 tools/export_model.py \
-c ./ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=output/DistillationModel/best_model_student \
-o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_person_attribute_infer
```
执行完该脚本后会在 `deploy/models/` 下生成 `PPLCNet_x1_0_person_attribute_infer` 文件夹,`models` 文件夹下应有如下文件结构:
```
├── PPLCNet_x1_0_person_attribute_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
```
**备注:** 此处的最佳权重是经过知识蒸馏后的权重路径,如果没有执行知识蒸馏的步骤,最佳模型保存在`output/PPLCNet_x1_0/best_model.pdparams`中。
<a name="6.1.2"></a>
### 6.1.2 直接下载 inference 模型
[6.1.1 小节](#6.1.1)提供了导出 inference 模型的方法,此处也提供了该场景可以下载的 inference 模型,可以直接下载体验。
```
cd deploy/models
# 下载 inference 模型并解压
wget https://paddleclas.bj.bcebos.com/models/PULC/person_attribute_infer.tar && tar -xf person_attribute_infer.tar
```
解压完毕后,`models` 文件夹下应有如下文件结构:
```
├── person_attribute_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
```
<a name="6.2"></a>
### 6.2 基于 Python 预测引擎推理
<a name="6.2.1"></a>
#### 6.2.1 预测单张图像
返回 `deploy` 目录:
```
cd ../
```
运行下面的命令,对图像 `./images/PULC/person_attribute/090004.jpg` 进行车辆属性识别。
```shell
# 使用下面的命令使用 GPU 进行预测
python3.7 python/predict_cls.py -c configs/PULC/person_attribute/inference_person_attribute.yaml -o Global.use_gpu=True
# 使用下面的命令使用 CPU 进行预测
python3.7 python/predict_cls.py -c configs/PULC/person_attribute/inference_person_attribute.yaml -o Global.use_gpu=False
```
输出结果如下。
```
090004.jpg: {'attributes': ['Male', 'Age18-60', 'Back', 'Glasses: False', 'Hat: False', 'HoldObjectsInFront: False', 'Backpack', 'Upper: LongSleeve UpperPlaid', 'Lower: Trousers', 'No boots'], 'output': [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1]}
```
<a name="6.2.2"></a>
#### 6.2.2 基于文件夹的批量预测
如果希望预测文件夹内的图像,可以直接修改配置文件中的 `Global.infer_imgs` 字段,也可以通过下面的 `-o` 参数修改对应的配置。
```shell
# 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False
python3.7 python/predict_cls.py -c configs/PULC/person_attribute/inference_person_attribute.yaml -o Global.infer_imgs="./images/PULC/person_attribute/"
```
终端中会输出该文件夹内所有图像的属性识别结果,如下所示。
```
090004.jpg: {'attributes': ['Male', 'Age18-60', 'Back', 'Glasses: False', 'Hat: False', 'HoldObjectsInFront: False', 'Backpack', 'Upper: LongSleeve UpperPlaid', 'Lower: Trousers', 'No boots'], 'output': [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1]}
090007.jpg: {'attributes': ['Female', 'Age18-60', 'Side', 'Glasses: False', 'Hat: False', 'HoldObjectsInFront: False', 'No bag', 'Upper: ShortSleeve', 'Lower: Skirt&Dress', 'No boots'], 'output': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0]}
```
<a name="6.3"></a>
### 6.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
<a name="6.4"></a>
### 6.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
<a name="6.5"></a>
### 6.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
<a name="6.6"></a>
### 6.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。
# PULC 佩戴安全帽分类模型
------
## 目录
- [1. 模型和应用场景介绍](#1)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [3.1 环境配置](#3.1)
- [3.2 数据准备](#3.2)
- [3.2.1 数据集来源](#3.2.1)
- [3.2.2 数据集获取](#3.2.2)
- [3.3 模型训练](#3.3)
- [3.4 模型评估](#3.4)
- [3.5 模型预测](#3.5)
- [4. 模型压缩](#4)
- [4.1 UDML 知识蒸馏](#4.1)
- [4.1.1 教师模型训练](#4.1.1)
- [4.1.2 蒸馏训练](#4.1.2)
- [5. 超参搜索](#5)
- [6. 模型推理部署](#6)
- [6.1 推理模型准备](#6.1)
- [6.1.1 基于训练得到的权重导出 inference 模型](#6.1.1)
- [6.1.2 直接下载 inference 模型](#6.1.2)
- [6.2 基于 Python 预测引擎推理](#6.2)
- [6.2.1 预测单张图像](#6.2.1)
- [6.2.2 基于文件夹的批量预测](#6.2.2)
- [6.3 基于 C++ 预测引擎推理](#6.3)
- [6.4 服务化部署](#6.4)
- [6.5 端侧部署](#6.5)
- [6.6 Paddle2ONNX 模型转换与预测](#6.6)
<a name="1"></a>
## 1. 模型和应用场景介绍
该案例提供了用户使用 PaddleClas 的超轻量图像分类方案(PULC,Practical Ultra Lightweight Classification)快速构建轻量级、高精度、可落地的“是否佩戴安全帽”的二分类模型。该模型可以广泛应用于如建筑施工场景、工厂车间场景、交通场景等。
下表列出了判断图片中是否佩戴安全帽的二分类模型的相关指标,展现了使用 Res2Net200_vd_26w_4s,SwinTranformer_tiny 和 MobileNetV3_large_x1_0 作为 backbone 训练得到的模型的相关指标,第三行至第六行依次展现了替换 backbone 为 PPLCNet_x1_0、使用 SSLD 预训练模型、使用 SSLD 预训练模型 + EDA 策略、使用 SSLD 预训练模型 + EDA 策略 + UDML 知识蒸馏策略训练得到的模型的相关指标。
| 模型 | Tpr(%) | 延时(ms) | 存储(M) | 策略 |
|-------|-----------|----------|---------------|---------------|
| SwinTranformer_tiny | 93.57 | 91.32 | 107 | 使用ImageNet预训练模型 |
| Res2Net200_vd_26w_4s | 98.92 | 80.99 | 284 | 使用ImageNet预训练模型 |
| MobileNetV3_small_x0_35 | 96.50 | 2.85 | 1.6 | 使用ImageNet预训练模型 |
| PPLCNet_x1_0 | 93.29 | 2.03 | 6.5 | 使用ImageNet预训练模型 |
| PPLCNet_x1_0 | 98.07 | 2.03 | 6.5 | 使用SSLD预训练模型 |
| PPLCNet_x1_0 | 99.30 | 2.03 | 6.5 | 使用SSLD预训练模型+EDA策略|
| <b>PPLCNet_x1_0<b> | <b>99.38<b> | <b>2.03<b> | <b>6.5<b> | 使用SSLD预训练模型+EDA策略+UDML知识蒸馏策略|
从表中可以看出,在使用服务器端大模型作为 backbone 时,SwinTranformer_tiny 精度较低,Res2Net200_vd_26w_4s 精度较高,但服务器端大模型推理速度普遍较慢。将 backboone 替换为轻量级模型 MobileNetV3_small_x0_35 后,速度可以大幅提升,但是精度显著降低。在将 backbone 替换为 PPLCNet_x1_0,精度较 MobileNetV3_small_x0_35 提高约 30 个百分点,与此同时速度快 20% 以上。在此基础上,将 PPLCNet_x1_0 的预训练模型替换为 SSLD 预训练模型后,在对推理速度无影响的前提下,精度提升约 4.8 个百分点,进一步地使用 EDA 策略后,精度可以再提升 0.7 个百分点。此时,PPLCNet_x1_0 已经接近了 Res2Net200_vd_26w_4s 模型的精度,但是速度快 70+ 倍。最后,在使用 UDML 知识蒸馏后,精度可以再提升 0.5 个百分点。此时,PPLCNet_x1_0 已经超过了 Res2Net200_vd_26w_4s 模型的精度,但速度是其 70 余倍。下面详细介绍关于 PULC 安全帽模型的训练方法和推理部署方法。
**备注:**
* `Tpr`指标的介绍可以参考 [3.3小节](#3.3)的备注部分,延时是基于 Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz 测试得到,开启MKLDNN加速策略,线程数为10。
* 关于PPLCNet的介绍可以参考[PPLCNet介绍](../models/PP-LCNet.md),相关论文可以查阅[PPLCNet paper](https://arxiv.org/abs/2109.15099)
<a name="2"></a>
## 2. 模型快速体验
<a name="2.1"></a>
### 2.1 安装 paddleclas
使用如下命令快速安装 paddleclas
```
pip3 install paddlepaddle paddleclas
```
<a name="2.2"></a>
### 2.2 预测
* 使用命令行快速预测
```bash
paddleclas --model_name=safety_helmet --infer_imgs=deploy/images/PULC/safety_helmet/safety_helmet_test_1.png
```
结果如下:
```
>>> result
class_ids: [1], scores: [0.9986255], label_names: ['unwearing_helmet'], filename: deploy/images/PULC/safety_helmet/safety_helmet_test_1.png
Predict complete!
```
**备注**: 更换其他预测的数据时,只需要改变 `--infer_imgs=xxx` 中的字段即可,支持传入整个文件夹。
* 在 Python 代码中预测
```python
import paddleclas
model = paddleclas.PaddleClas(model_name="safety_helmet")
result = model.predict(input_data="deploy/images/PULC/safety_helmet/safety_helmet_test_1.png")
print(next(result))
```
**备注**`model.predict()` 为可迭代对象(`generator`),因此需要使用 `next()` 函数或 `for` 循环对其迭代调用。每次调用将以 `batch_size` 为单位进行一次预测,并返回预测结果, 默认 `batch_size` 为 1,如果需要更改 `batch_size`,实例化模型时,需要指定 `batch_size`,如 `model = paddleclas.PaddleClas(model_name="safety_helmet", batch_size=2)`, 使用上述测试代码返回结果示例如下:
```
>>> result
[{'class_ids': [1], 'scores': [0.9986255], 'label_names': ['unwearing_helmet'], 'filename': 'deploy/images/PULC/safety_helmet/safety_helmet_test_1.png'}]
```
<a name="3"></a>
## 3. 模型训练、评估和预测
<a name="3.1"></a>
### 3.1 环境配置
* 安装:请先参考 [Paddle 安装教程](../installation/install_paddle.md) 以及 [PaddleClas 安装教程](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。
<a name="3.2"></a>
### 3.2 数据准备
<a name="3.2.1"></a>
#### 3.2.1 数据集来源
本案例中所使用的所有数据集均为开源数据,数据集基于[Safety-Helmet-Wearing-Dataset](https://github.com/njvisionpower/Safety-Helmet-Wearing-Dataset)[hard-hat-detection](https://www.kaggle.com/datasets/andrewmvd/hard-hat-detection)[Large-scale CelebFaces Attributes (CelebA) Dataset](https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html)处理整合而来。
<a name="3.2.2"></a>
#### 3.2.2 数据集获取
在公开数据集的基础上经过后处理即可得到本案例需要的数据,具体处理方法如下:
* 对于 Safety-Helmet-Wearing-Dataset 数据集:根据 bbox 标签数据,对其宽、高放大 3 倍作为 bbox 对图像进行裁剪,其中带有安全帽的图像类别为0,不戴安全帽的图像类别为1;
* 对于 hard-hat-detection 数据集:仅使用其中类别标签为 “hat” 的图像,并使用 bbox 标签进行裁剪,图像类别为0;
* 对于 CelebA 数据集:仅使用其中类别标签为 “Wearing_Hat” 的图像,并使用 bbox 标签进行裁剪,图像类别为0。
在整合上述数据后,可得到共约 15 万数据,其中戴安全帽与不戴安全帽的图像数量分别约为 2.8 万与 12.1 万,然后在两个类别上分别随机选取 0.56 万张图像作为测试集,共约 1.12 万张图像,其他约 13.8 万张图像作为训练集。
处理后的数据集部分数据可视化如下:
![](../../images/PULC/docs/safety_helmet_data_demo.png)
此处提供了经过上述方法处理好的数据,可以直接下载得到。
进入 PaddleClas 目录。
```
cd path_to_PaddleClas
```
进入 `dataset/` 目录,下载并解压安全帽场景的数据。
```shell
cd dataset
wget https://paddleclas.bj.bcebos.com/data/PULC/safety_helmet.tar
tar -xf safety_helmet.tar
cd ../
```
执行上述命令后,`dataset/` 下存在 `safety_helmet` 目录,该目录中具有以下数据:
```
├── images
│   ├── VOC2028_part2_001209_1.jpg
│   ├── HHD_hard_hat_workers23_1.jpg
│   ├── CelebA_077809.jpg
│   ├── ...
│   └── ...
├── train_list.txt
└── val_list.txt
```
其中,`train_list.txt``val_list.txt` 分别为训练集和验证集的标签文件,所有的图像数据在 `images/` 目录下。
**备注:**
* 关于 `train_list.txt``val_list.txt`的格式说明,可以参考[PaddleClas分类数据集格式说明](../data_preparation/classification_dataset.md#1-数据集格式说明)
<a name="3.3"></a>
### 3.3 模型训练
`ppcls/configs/PULC/safety_helmet/PPLCNet_x1_0.yaml` 中提供了基于该场景的训练配置,可以通过如下脚本启动训练:
```shell
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/safety_helmet/PPLCNet_x1_0.yaml
```
验证集的最佳指标在 `0.975-0.985` 之间(数据集较小,容易造成波动)。
**备注:**
* 此时使用的指标为Tpr,该指标描述了在假正类率(Fpr)小于某一个指标时的真正类率(Tpr),是产业中二分类问题常用的指标之一。在本案例中,Fpr 为万分之一。关于 Fpr 和 Tpr 的更多介绍,可以参考[这里](https://baike.baidu.com/item/AUC/19282953)
* 在eval时,会打印出来当前最佳的 TprAtFpr 指标,具体地,其会打印当前的 `Fpr``Tpr` 值,以及当前的 `threshold`值,`Tpr` 值反映了在当前 `Fpr` 值下的召回率,该值越高,代表模型越好。`threshold` 表示当前最佳 `Fpr` 所对应的分类阈值,可用于后续模型部署落地等。
<a name="3.4"></a>
### 3.4 模型评估
训练好模型之后,可以通过以下命令实现对模型指标的评估。
```bash
python3 tools/eval.py \
-c ./ppcls/configs/PULC/safety_helmet/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=output/PPLCNet_x1_0/best_model
```
其中 `-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了训练过程中的最佳参数权重文件所在的路径,如需指定其他权重文件,只需替换对应的路径即可。
<a name="3.5"></a>
### 3.5 模型预测
模型训练完成之后,可以加载训练得到的预训练模型,进行模型预测。在模型库的 `tools/infer.py` 中提供了完整的示例,只需执行下述命令即可完成模型预测:
```python
python3 tools/infer.py \
-c ./ppcls/configs/PULC/safety_helmet/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=output/PPLCNet_x1_0/best_model
```
输出结果如下:
```
[{'class_ids': [1], 'scores': [0.9524797], 'label_names': ['unwearing_helmet'], 'file_name': 'deploy/images/PULC/safety_helmet/safety_helmet_test_1.png'}]
```
**备注:**
* 这里`-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。
* 默认是对 `deploy/images/PULC/safety_helmet/safety_helmet_test_1.png` 进行预测,此处也可以通过增加字段 `-o Infer.infer_imgs=xxx` 对其他图片预测。
* 二分类默认的阈值为0.5, 如果需要指定阈值,可以重写 `Infer.PostProcess.threshold` ,如 `-o Infer.PostProcess.threshold=0.9167`,该值需要根据实际应用场景来确定,在 safety_helmet 数据集的 val 验证集上,在万分之一 Fpr 下得到的最佳 Tpr 时,该值为 0.9167。
<a name="4"></a>
## 4. 模型压缩
<a name="4.1"></a>
### 4.1 UDML 知识蒸馏
UDML 知识蒸馏是一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[UDML 知识蒸馏](@ruoyu)
<a name="4.1.1"></a>
#### 4.1.1 蒸馏训练
配置文件 `ppcls/configs/PULC/safety_helmet/PPLCNet_x1_0_distillation.yaml` 提供了 `UDML知识蒸馏策略` 的配置。训练脚本如下:
```shell
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/safety_helmet/PPLCNet_x1_0_distillation.yaml
```
验证集的最佳指标为 `0.990-0.993` 之间,当前模型最好的权重保存在 `output/DistillationModel/best_model_student.pdparams`
<a name="5"></a>
## 5. 超参搜索
[3.2 节](#3.2)[4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `SHAS 超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[SHAS 超参数搜索策略](#TODO)来获得更好的训练超参数。
**备注**:此部分内容是可选内容,搜索过程需要较长的时间,您可以根据自己的硬件情况来选择执行。如果没有更换数据集,可以忽略此节内容。
<a name="6"></a>
## 6. 模型推理部署
<a name="6.1"></a>
### 6.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference 可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于 Paddle Inference 推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
当使用 Paddle Inference 推理时,加载的模型类型为 inference 模型。本案例提供了两种获得 inference 模型的方法,如果希望得到和文档相同的结果,请选择[直接下载 inference 模型](#6.1.2)的方式。
<a name="6.1.1"></a>
### 6.1.1 基于训练得到的权重导出 inference 模型
此处,我们提供了将权重和模型转换的脚本,执行该脚本可以得到对应的 inference 模型:
```bash
python3 tools/export_model.py \
-c ./ppcls/configs/PULC/safety_helmet/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=output/DistillationModel/best_model_student \
-o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_safety_helmet_infer
```
执行完该脚本后会在 `deploy/models/` 下生成 `PPLCNet_x1_0_safety_helmet_infer` 目录,该目录下有如下文件结构:
```
├── PPLCNet_x1_0_safety_helmet_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
```
**备注:** 此处的最佳权重是经过知识蒸馏后的权重路径,如果没有执行知识蒸馏的步骤,最佳模型保存在 `output/PPLCNet_x1_0/best_model.pdparams` 中。
<a name="6.1.2"></a>
### 6.1.2 直接下载 inference 模型
[6.1.1 小节](#6.1.1)提供了导出 inference 模型的方法,此处也提供了该场景可以下载的 inference 模型,可以直接下载体验。
```
cd deploy/models
# 下载 inference 模型并解压
wget https://paddleclas.bj.bcebos.com/models/PULC/safety_helmet_infer.tar && tar -xf safety_helmet_infer.tar
```
解压完毕后,`models` 文件夹下应有如下文件结构:
```
├── safety_helmet_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
```
<a name="6.2"></a>
### 6.2 基于 Python 预测引擎推理
<a name="6.2.1"></a>
#### 6.2.1 预测单张图像
返回 `deploy` 目录:
```
cd ../
```
运行下面的命令,对图像 `./images/PULC/safety_helmet/safety_helmet_test_1.png` 进行是否佩戴安全帽分类。
```shell
# 使用下面的命令使用 GPU 进行预测
python3.7 python/predict_cls.py -c configs/PULC/safety_helmet/inference_safety_helmet.yaml
# 使用下面的命令使用 CPU 进行预测
python3.7 python/predict_cls.py -c configs/PULC/safety_helmet/inference_safety_helmet.yaml -o Global.use_gpu=False
```
输出结果如下。
```
safety_helmet_test_1.png: class id(s): [1], score(s): [1.00], label_name(s): ['unwearing_helmet']
```
**备注:** 二分类默认的阈值为0.5, 如果需要指定阈值,可以重写 `Infer.PostProcess.threshold` ,如 `-o Infer.PostProcess.threshold=0.9167`,该值需要根据实际应用场景来确定,在 safety_helmet 数据集的 val 验证集上,在万分之一 Fpr 下得到的最佳 Tpr 时,该值为 0.9167。该阈值的确定方法可以参考[3.3节](#3.3)备注部分。
<a name="6.2.2"></a>
#### 6.2.2 基于文件夹的批量预测
如果希望预测文件夹内的图像,可以直接修改配置文件中的 `Global.infer_imgs` 字段,也可以通过下面的 `-o` 参数修改对应的配置。
```shell
# 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False
python3.7 python/predict_cls.py -c configs/PULC/safety_helmet/inference_safety_helmet.yaml -o Global.infer_imgs="./images/PULC/safety_helmet/"
```
终端中会输出该文件夹内所有图像的分类结果,如下所示。
```
safety_helmet_test_1.png: class id(s): [1], score(s): [1.00], label_name(s): ['unwearing_helmet']
safety_helmet_test_2.png: class id(s): [0], score(s): [1.00], label_name(s): ['wearing_helmet']
```
其中,`wearing_helmet` 表示该图中的人佩戴了安全帽,`unwearing_helmet` 表示该图中的人未佩戴安全帽。
<a name="6.3"></a>
### 6.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
<a name="6.4"></a>
### 6.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
<a name="6.5"></a>
### 6.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
<a name="6.6"></a>
### 6.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。
此差异已折叠。
# PULC 文本行方向分类模型
------
## 目录
- [1. 模型和应用场景介绍](#1)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [3.1 环境配置](#3.1)
- [3.2 数据准备](#3.2)
- [3.2.1 数据集来源](#3.2.1)
- [3.2.2 数据集获取](#3.2.2)
- [3.3 模型训练](#3.3)
- [3.4 模型评估](#3.4)
- [3.5 模型预测](#3.5)
- [4. 模型压缩](#4)
- [4.1 SKL-UGI 知识蒸馏](#4.1)
- [4.1.1 教师模型训练](#4.1.1)
- [4.1.2 蒸馏训练](#4.1.2)
- [5. 超参搜索](#5)
- [6. 模型推理部署](#6)
- [6.1 推理模型准备](#6.1)
- [6.1.1 基于训练得到的权重导出 inference 模型](#6.1.1)
- [6.1.2 直接下载 inference 模型](#6.1.2)
- [6.2 基于 Python 预测引擎推理](#6.2)
- [6.2.1 预测单张图像](#6.2.1)
- [6.2.2 基于文件夹的批量预测](#6.2.2)
- [6.3 基于 C++ 预测引擎推理](#6.3)
- [6.4 服务化部署](#6.4)
- [6.5 端侧部署](#6.5)
- [6.6 Paddle2ONNX 模型转换与预测](#6.6)
<a name="1"></a>
## 1. 模型和应用场景介绍
该案例提供了用户使用 PaddleClas 的超轻量图像分类方案(PULC,Practical Ultra Lightweight Classification)快速构建轻量级、高精度、可落地的文本行方向分类模型。该模型可以广泛应用于如文字矫正、文字识别等场景。
下表列出了文本行方向分类模型的相关指标,前两行展现了使用 Res2Net200_vd 和 MobileNetV3_large_x1_0 作为 backbone 训练得到的模型的相关指标,第三行至第六行依次展现了替换 backbone 为 PPLCNet_x1_0、使用 SSLD 预训练模型、使用 SSLD 预训练模型 + EDA 策略、使用 SSLD 预训练模型 + EDA 策略 + SKL-UGI 知识蒸馏策略训练得到的模型的相关指标。
| 模型 | Top-1 Acc(%) | 延时(ms) | 存储(M) | 策略 |
|-------|-----------|----------|---------------|---------------|
| SwinTranformer_tiny | 93.61 | 89.64 | 107 | 使用 ImageNet 预训练模型 |
| MobileNetV3_small_x0_35 | 81.40 | 2.96 | 17 | 使用 ImageNet 预训练模型 |
| PPLCNet_x1_0 | 89.99 | 2.11 | 6.5 | 使用 ImageNet 预训练模型 |
| PPLCNet_x1_0* | 94.06 | 2.68 | 6.5 | 使用 ImageNet 预训练模型 |
| PPLCNet_x1_0* | 94.11 | 2.68 | 6.5 | 使用 SSLD 预训练模型 |
| <b>PPLCNet_x1_0**<b> | <b>96.01<b> | <b>2.72<b> | <b>6.5<b> | 使用 SSLD 预训练模型+EDA 策略|
| PPLCNet_x1_0** | 95.86 | 2.72 | 6.5 | 使用 SSLD 预训练模型+EDA 策略+SKL-UGI 知识蒸馏策略|
从表中可以看出,backbone 为 SwinTranformer_tiny 时精度较高,但是推理速度较慢。将 backboone 替换为轻量级模型 MobileNetV3_small_x0_35 后,速度可以大幅提升,精度下降也比较明显。将 backbone 替换为 PPLCNet_x1_0 时,精度较 MobileNetV3_small_x0_35 高 8.6 个百分点,速度快10%左右。在此基础上,更改分辨率和stride, 速度变慢 27%,但是精度可以提升 4.5%(采用[PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)的方案),使用 SSLD 预训练模型后,精度可以继续提升约 0.05% ,进一步地,当融合EDA策略后,精度可以再提升 1.9 个百分点。最后,融合SKL-UGI 知识蒸馏策略后,在该场景无效。关于 PULC 的训练方法和推理部署方法将在下面详细介绍。
**备注:**
* 其中不带\*的模型表示分辨率为224x224,带\*的模型表示分辨率为48x192(h*w),数据增强从网络中的 stride 改为 `[2, [2, 1], [2, 1], [2, 1], [2, 1]]`,其中,外层列表中的每一个元素代表网络结构下采样层的stride,该策略为 [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR) 提供的文本行方向分类器方案。带\*\*的模型表示分辨率为80x160(h*w), 网络中的 stride 改为 `[2, [2, 1], [2, 1], [2, 1], [2, 1]]`,其中,外层列表中的每一个元素代表网络结构下采样层的stride,此分辨率是经过[SHAS 超参数搜索策略](#TODO)搜索得到的。
* 延时是基于 Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz 测试得到,开启 MKLDNN 加速策略,线程数为10。
* 关于PPLCNet的介绍可以参考[PPLCNet介绍](../models/PP-LCNet.md),相关论文可以查阅[PPLCNet paper](https://arxiv.org/abs/2109.15099)
<a name="2"></a>
## 2. 模型快速体验
<a name="2.1"></a>
### 2.1 安装 paddleclas
使用如下命令快速安装 paddlepaddle, paddleclas
```
pip3 install paddlepaddle paddleclas
```
<a name="2.2"></a>
### 2.2 预测
* 使用命令行快速预测
```bash
paddleclas --model_name=textline_orientation --infer_imgs=deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png
```
结果如下:
```
>>> result
class_ids: [0], scores: [1.00], label_names: ['0_degree'], filename: deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png
Predict complete!
```
**备注**: 更换其他预测的数据时,只需要改变 `--infer_imgs=xx` 中的字段即可,支持传入整个文件夹。
* 在 Python 代码中预测
```python
import paddleclas
model = paddleclas.PaddleClas(model_name="textline_orientation")
result = model.predict(input_data="deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png")
print(next(result))
```
**备注**`model.predict()` 为可迭代对象(`generator`),因此需要使用 `next()` 函数或 `for` 循环对其迭代调用。每次调用将以 `batch_size` 为单位进行一次预测,并返回预测结果, 默认 `batch_size` 为 1,如果需要更改 `batch_size`,实例化模型时,需要指定 `batch_size`,如 `model = paddleclas.PaddleClas(model_name="person_exists", batch_size=2)`, 使用默认的代码返回结果示例如下:
```
>>> result
[{'class_ids': [0], 'scores': [1.00], 'label_names': ['0_degree'], 'filename': 'deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png'}]
```
<a name="3"></a>
## 3. 模型训练、评估和预测
<a name="3.1"></a>
### 3.1 环境配置
* 安装:请先参考 [Paddle 安装教程](../installation/install_paddle.md) 以及 [PaddleClas 安装教程](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。
<a name="3.2"></a>
### 3.2 数据准备
<a name="3.2.1"></a>
#### 3.2.1 数据集来源
本案例中所使用的所有数据集来源于内部数据,如果您希望体验训练过程,可以使用开源数据如[ICDAR2019-LSVT 文本行识别数据](https://aistudio.baidu.com/aistudio/datasetdetail/8429)
<a name="3.2.2"></a>
#### 3.2.2 数据集获取
在公开数据集的基础上经过后处理即可得到本案例需要的数据,具体处理方法如下:
本案例处理了 ICDAR2019-LSVT 文本行识别数据,将其中的 id 号为 0-1999 作为本案例的数据集合,经过旋转处理成 0 类 和 1 类,其中 0 类代表文本行为正,即 0 度,1 类代表文本行为反,即 180 度。
- 训练集合,id号为 0-1799 作为训练集合,0 类和 1 类共 3600 张。
- 验证集合,id号为 1800-1999 作为验证集合,0 类和 1 类共 400 张。
处理后的数据集部分数据可视化如下:
![](../../images/PULC/docs/textline_orientation_data_demo.png)
此处提供了经过上述方法处理好的数据,可以直接下载得到。
进入 PaddleClas 目录。
```
cd path_to_PaddleClas
```
进入 `dataset/` 目录,下载并解压有人/无人场景的数据。
```shell
cd dataset
wget https://paddleclas.bj.bcebos.com/data/PULC/textline_orientation.tar
tar -xf textline_orientation.tar
cd ../
```
执行上述命令后,`dataset/` 下存在 `textline_orientation` 目录,该目录中具有以下数据:
```
├── 0
│   ├── img_0.jpg
│   ├── img_1.jpg
...
├── 1
│   ├── img_0.jpg
│   ├── img_1.jpg
...
├── train_list.txt
└── val_list.txt
```
其中 `0/``1/` 分别存放 0 类和 1 类的数据。`train_list.txt``val_list.txt` 分别为训练集和验证集的标签文件。
**备注:**
* 关于 `train_list.txt``val_list.txt` 的格式说明,可以参考[PaddleClas分类数据集格式说明](../data_preparation/classification_dataset.md#1-数据集格式说明)
<a name="3.3"></a>
### 3.3 模型训练
`ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml` 中提供了基于该场景的训练配置,可以通过如下脚本启动训练:
```shell
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml
```
**备注:**
* 由于此时使用的数据集并非内部非开源数据集,此处不能直接复现提供的模型的指标,如果希望得到更高的精度,可以根据需要处理[ICDAR2019-LSVT 文本行识别数据](https://aistudio.baidu.com/aistudio/datasetdetail/8429)
<a name="3.4"></a>
### 3.4 模型评估
训练好模型之后,可以通过以下命令实现对模型指标的评估。
```bash
python3 tools/eval.py \
-c ./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml \
-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"
```
其中 `-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。
<a name="3.5"></a>
### 3.5 模型预测
模型训练完成之后,可以加载训练得到的预训练模型,进行模型预测。在模型库的 `tools/infer.py` 中提供了完整的示例,只需执行下述命令即可完成模型预测:
```python
python3 tools/infer.py \
-c ./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=output/PPLCNet_x1_0/best_model \
```
输出结果如下:
```
[{'class_ids': [0], 'scores': [1.0], 'file_name': 'deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png', 'label_names': ['0_degree']}]
```
**备注:**
* 这里`-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。
* 默认是对 `deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png` 进行预测,此处也可以通过增加字段 `-o Infer.infer_imgs=xxx` 对其他图片预测。
<a name="4"></a>
## 4. 模型压缩
<a name="4.1"></a>
### 4.1 SKL-UGI 知识蒸馏
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](@ruoyu)
<a name="4.1.1"></a>
#### 4.1.1 教师模型训练
复用 `./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml` 中的超参数,训练教师模型,训练脚本如下:
```shell
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml \
-o Arch.name=ResNet101_vd
```
当前教师模型最好的权重保存在 `output/ResNet101_vd/best_model.pdparams`
<a name="4.1.2"></a>
#### 4.1.2 蒸馏训练
配置文件`ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0_distillation.yaml`提供了`SKL-UGI知识蒸馏策略`的配置。该配置将`ResNet101_vd`当作教师模型,`PPLCNet_x1_0`当作学生模型。训练脚本如下:
```shell
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0_distillation.yaml \
-o Arch.models.0.Teacher.pretrained=output/ResNet101_vd/best_model
```
当前模型最好的权重保存在 `output/DistillationModel/best_model_student.pdparams`
<a name="5"></a>
## 5. 超参搜索
[3.2 节](#3.2)[4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `SHAS 超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[SHAS 超参数搜索策略](#TODO)来获得更好的训练超参数。
**备注:** 此部分内容是可选内容,搜索过程需要较长的时间,您可以根据自己的硬件情况来选择执行。
<a name="6"></a>
## 6. 模型推理部署
<a name="6.1"></a>
### 6.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
当使用 Paddle Inference 推理时,加载的模型类型为 inference 模型。本案例提供了两种获得 inference 模型的方法,如果希望得到和文档相同的结果,请选择[直接下载 inference 模型](#6.1.2)的方式。
<a name="6.1.1"></a>
### 6.1.1 基于训练得到的权重导出 inference 模型
此处,我们提供了将权重和模型转换的脚本,执行该脚本可以得到对应的 inference 模型:
```bash
python3 tools/export_model.py \
-c ./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=output/PPLCNet_x1_0/best_model \
-o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_textline_orientation_infer
```
执行完该脚本后会在 `deploy/models/` 下生成 `PPLCNet_x1_0_textline_orientation_infer` 文件夹,`models` 文件夹下应有如下文件结构:
```
├── PPLCNet_x1_0_textline_orientation_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
```
**备注:** 此处的最佳权重可以根据实际情况来选择,如果希望导出知识蒸馏后的权重,则最佳权重保存在`output/DistillationModel/best_model_student.pdparams`,在导出命令中更改`-o Global.pretrained_model=xx`中的字段为`output/DistillationModel/best_model_student`即可。
<a name="6.1.2"></a>
### 6.1.2 直接下载 inference 模型
[6.1.1 小节](#6.1.1)提供了导出 inference 模型的方法,此处也提供了该场景可以下载的 inference 模型,可以直接下载体验。
```
cd deploy/models
# 下载 inference 模型并解压
wget https://paddleclas.bj.bcebos.com/models/PULC/textline_orientation_infer.tar && tar -xf textline_orientation_infer.tar
```
解压完毕后,`models` 文件夹下应有如下文件结构:
```
├── textline_orientation_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
```
<a name="6.2"></a>
### 6.2 基于 Python 预测引擎推理
<a name="6.2.1"></a>
#### 6.2.1 预测单张图像
返回 `deploy` 目录:
```
cd ../
```
运行下面的命令,对图像 `./images/PULC/textline_orientation/textline_orientation_test_0_0.png` 进行文字方向cd分类。
```shell
# 使用下面的命令使用 GPU 进行预测
python3.7 python/predict_cls.py -c configs/PULC/textline_orientation/inference_textline_orientation.yaml
# 使用下面的命令使用 CPU 进行预测
python3.7 python/predict_cls.py -c configs/PULC/textline_orientation/inference_textline_orientation.yaml -o Global.use_gpu=False
```
输出结果如下。
```
textline_orientation_test_0_0.png: class id(s): [0], score(s): [1.00], label_name(s): ['0_degree']
```
<a name="6.2.2"></a>
#### 6.2.2 基于文件夹的批量预测
如果希望预测文件夹内的图像,可以直接修改配置文件中的 `Global.infer_imgs` 字段,也可以通过下面的 `-o` 参数修改对应的配置。
```shell
# 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False
python3.7 python/predict_cls.py -c configs/PULC/textline_orientation/inference_textline_orientation.yaml -o Global.infer_imgs="./images/PULC/textline_orientation/"
```
终端中会输出该文件夹内所有图像的分类结果,如下所示。
```
textline_orientation_test_0_0.png: class id(s): [0], score(s): [1.00], label_name(s): ['0_degree']
textline_orientation_test_0_1.png: class id(s): [0], score(s): [1.00], label_name(s): ['0_degree']
textline_orientation_test_1_0.png: class id(s): [1], score(s): [1.00], label_name(s): ['180_degree']
textline_orientation_test_1_1.png: class id(s): [1], score(s): [1.00], label_name(s): ['180_degree']
```
其中,`0_degree` 表示该文本行为 0 度,`180_degree` 表示该文本行为 180 度。
<a name="6.3"></a>
### 6.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
<a name="6.4"></a>
### 6.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
<a name="6.5"></a>
### 6.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
<a name="6.6"></a>
### 6.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。
...@@ -39,19 +39,19 @@ ...@@ -39,19 +39,19 @@
该案例提供了用户使用 PaddleClas 的超轻量图像分类方案(PULC,Practical Ultra Lightweight Classification)快速构建轻量级、高精度、可落地的交通标志分类模型。该模型可以广泛应用于自动驾驶、道路监控等场景。 该案例提供了用户使用 PaddleClas 的超轻量图像分类方案(PULC,Practical Ultra Lightweight Classification)快速构建轻量级、高精度、可落地的交通标志分类模型。该模型可以广泛应用于自动驾驶、道路监控等场景。
下表列出了不同交通标志分类模型的相关指标,前两行展现了使用 SwinTranformer_tiny 和 MobileNetV3_large_x1_0 作为 backbone 训练得到的模型的相关指标,第三行至第六行依次展现了替换 backbone 为 PPLCNet_x1_0、使用 SSLD 预训练模型、使用 SSLD 预训练模型 + EDA 策略、使用 SSLD 预训练模型 + EDA 策略 + SKL-UGI 知识蒸馏策略训练得到的模型的相关指标。 下表列出了不同交通标志分类模型的相关指标,前两行展现了使用 SwinTranformer_tiny 和 MobileNetV3_small_x0_35 作为 backbone 训练得到的模型的相关指标,第三行至第六行依次展现了替换 backbone 为 PPLCNet_x1_0、使用 SSLD 预训练模型、使用 SSLD 预训练模型 + EDA 策略、使用 SSLD 预训练模型 + EDA 策略 + SKL-UGI 知识蒸馏策略训练得到的模型的相关指标。
| 模型 | Top-1 Acc(%) | 延时(ms) | 存储(M) | 策略 | | 模型 | Top-1 Acc(%) | 延时(ms) | 存储(M) | 策略 |
|-------|-----------|----------|---------------|---------------| |-------|-----------|----------|---------------|---------------|
| SwinTranformer_tiny | 98.11 | 89.45 | 111 | 使用ImageNet预训练模型 | | SwinTranformer_tiny | 98.11 | 89.45 | 111 | 使用ImageNet预训练模型 |
| MobileNetV3_large_x1_0 | 97.79 | 4.81 | 23 | 使用ImageNet预训练模型 | | MobileNetV3_small_x0_35 | 93.88 | 3.01 | 3.9 | 使用ImageNet预训练模型 |
| PPLCNet_x1_0 | 97.78 | 2.10 | 8.2 | 使用ImageNet预训练模型 | | PPLCNet_x1_0 | 97.78 | 2.10 | 8.2 | 使用ImageNet预训练模型 |
| PPLCNet_x1_0 | 97.84 | 2.10 | 8.2 | 使用SSLD预训练模型 | | PPLCNet_x1_0 | 97.84 | 2.10 | 8.2 | 使用SSLD预训练模型 |
| PPLCNet_x1_0 | 98.14 | 2.10 | 8.2 | 使用SSLD预训练模型+EDA策略| | PPLCNet_x1_0 | 98.14 | 2.10 | 8.2 | 使用SSLD预训练模型+EDA策略|
| <b>PPLCNet_x1_0<b> | <b>98.35<b> | <b>2.10<b> | <b>8.2<b> | 使用SSLD预训练模型+EDA策略+SKL-UGI知识蒸馏策略| | <b>PPLCNet_x1_0<b> | <b>98.35<b> | <b>2.10<b> | <b>8.2<b> | 使用SSLD预训练模型+EDA策略+SKL-UGI知识蒸馏策略|
从表中可以看出,backbone 为 SwinTranformer_tiny 时精度较高,但是推理速度较慢。将 backbone 替换为轻量级模型 MobileNetV3_large_x1_0 后,速度可以大幅提升,但是精度下降明显。将 backbone 替换为 PPLCNet_x1_0 时,精度低0.01%,但是速度提升 1 倍左右。在此基础上,使用 SSLD 预训练模型后,在不改变推理速度的前提下,精度可以提升约 0.06%,进一步地,当融合EDA策略后,精度可以再提升 0.3%,最后,在使用 SKL-UGI 知识蒸馏后,精度可以继续提升 0.21%。此时,PPLCNet_x1_0 的精度超越了SwinTranformer_tiny,速度快 41 倍。关于 PULC 的训练方法和推理部署方法将在下面详细介绍。 从表中可以看出,backbone 为 SwinTranformer_tiny 时精度较高,但是推理速度较慢。将 backbone 替换为轻量级模型 MobileNetV3_small_x0_35 后,速度可以大幅提升,但是精度下降明显。将 backbone 替换为 PPLCNet_x1_0 时,精度低3.9%,同时速度提升 43% 左右。在此基础上,使用 SSLD 预训练模型后,在不改变推理速度的前提下,精度可以提升约 0.06%,进一步地,当融合EDA策略后,精度可以再提升 0.3%,最后,在使用 SKL-UGI 知识蒸馏后,精度可以继续提升 0.21%。此时,PPLCNet_x1_0 的精度超越了 SwinTranformer_tiny,速度快 41 倍。关于 PULC 的训练方法和推理部署方法将在下面详细介绍。
**备注:** **备注:**
...@@ -62,8 +62,48 @@ ...@@ -62,8 +62,48 @@
## 2. 模型快速体验 ## 2. 模型快速体验
(pip方式,待补充) <a name="2.1"></a>
### 2.1 安装 paddleclas
使用如下命令快速安装 paddlepaddle, paddleclas
```bash
pip3 install paddlepaddle paddleclas
```
<a name="2.2"></a>
### 2.2 预测
* 使用命令行快速预测
```bash
paddleclas --model_name traffic_sign --infer_imgs PaddleClas/deploy/images/PULC/traffic_sign/100999_83928.jpg
```
结果如下:
```
>>> result
class_ids: [182, 179, 162, 128, 24], scores: [0.98623, 0.01255, 0.00022, 0.00021, 0.00012], label_names: ['pl110', 'pl100', 'pl120', 'p26', 'pm10'], filename: PaddleClas/deploy/images/PULC/traffic_sign/100999_83928.jpg
```
**备注**: 更换其他预测的数据时,只需要改变 `--infer_imgs=xx` 中的字段即可,支持传入整个文件夹。
* 在 Python 代码中预测
```python
import paddleclas
model = paddleclas.PaddleClas(model_name="traffic_sign")
result = model.predict(input_data="PaddleClas/deploy/images/PULC/traffic_sign/100999_83928.jpg")
print(next(result))
```
**备注**`model.predict()` 为可迭代对象(`generator`),因此需要使用 `next()` 函数或 `for` 循环对其迭代调用。每次调用将以 `batch_size` 为单位进行一次预测,并返回预测结果, 默认 `batch_size` 为 1,如果需要更改 `batch_size`,实例化模型时,需要指定 `batch_size`,如 `model = paddleclas.PaddleClas(model_name="person_exists", batch_size=2)`, 使用默认的代码返回结果示例如下:
```
result
[{'class_ids': [182, 179, 162, 128, 24], 'scores': [0.98623, 0.01255, 0.00022, 0.00021, 0.00012], 'label_names': ['pl110', 'pl100', 'pl120', 'p26', 'pm10'], 'filename': 'PaddleClas/deploy/images/PULC/traffic_sign/100999_83928.jpg'}]
```
<a name="3"></a> <a name="3"></a>
......
## 超轻量图像分类方案PULC
### 0. PULC方案简介
图像分类是计算机视觉的基础算法之一,是企业应用中最常见的算法,也是许多CV应用的重要组成部分。
近年来,骨干网络模型发展迅速,Imagenet的精度纪录被不断刷新。然而,这些模型在实用场景的表现有时却不尽如人意。
一方面,精度高的模型往往体积大,运算慢,常常难以满足实际部署需求;另一方面,选择了合适的模型之后,往往还需要经验丰富的工程师进行调参,
费时费力。PaddleClas为了解决企业应用难题,让分类模型的训练和调参更加容易,总结推出了实用轻量图像分类解决方案PULC。
PULC融合了骨干网络、数据增广、蒸馏等多种前沿算法,可以自动训练得到轻量且高精度的图像分类模型。
方案在人、车、OCR等方向的多个场景中均验证有效,用超轻量模型就可实现与SwinTransformer模型接近的精度,预测速度提高50倍。
<div align="center">
<img src="https://user-images.githubusercontent.com/19523330/172054976-e12d2c9b-439f-469d-b520-56bb5c3e6215.png"/>
</div>
方案主要包括4部分,分别是:PP-LCNet轻量级骨干网络、SSLD预训练权重、数据增强策略集成和SKL-UGI知识蒸馏算法。此外,我们还采用了超参搜索的方法,高效优化训练中的超参数。
下面,我们以有人/无人场景为例,对方案进行说明。
**注**:针对一些特定场景,我们提供了基础的训练文档供参考,例如[有人/无人分类模型](PULC_person_exists.md)等,您可以在[这里]()找到这些文档。
如果这些文档中的方法不能满足您的需求,或者您需要自定义训练任务,您可以参考本文档。
### 1. 数据准备
#### 1.1 数据集格式说明
PaddleClas 使用 `txt` 格式文件指定训练集和测试集,以有人无人场景为例,其中 `train_list.txt``val_list.txt` 的格式形如:
```shell
# 每一行采用"空格"分隔图像路径与标注
train/1.jpg 0
train/10.jpg 1
...
```
如果您想获取更多常用分类数据集的信息,可以参考文档[常见分类说明](../data_preparation/classification_dataset.md)
// todo@cuicheng v2.4.1 1.2有人无人场景数据获取代码。整理obj365数据提取的数据并说明。
#### 1.2 标注文件生成
如果您已经有实际场景中的数据,那么按照上节的格式进行标注即可。这里,我们提供了一个快速生成数据的脚本,您只需要将不同类别的数据分别放在文件夹中,运行脚本即可生成标注文件。
// todo 数据脚本。
### 2. 使用标准分类配置进行训练
#### 2.1 骨干网络PP-LCNet
PULC采用了轻量骨干网络PP-LCNet,相比同精度竞品速度快50%,您可以在[这里](../models/PP-LCNet.md)找到详细介绍。
直接使用PP-LCNet训练的命令为:
**todo**
为了方便性能对比,我们也提供了大模型SwinTransformer和轻量模型MobileNet的配置文件,您可以使用命令训练:
**todo**
训练得到的模型精度对比如下表。从中可以看出,LCNet的速度比SwinTransformer快很多,但是精度也略低。
下面我们通过一系列优化来提高PP-LCNet模型的精度。
#### 2.2 SSLD预训练权重
SSLD是百度自研的半监督蒸馏算法,在ImageNet数据集上,模型精度可以提升3-7个点,您可以在[这里](../algorithm_introduction/#2)找到详细介绍。
我们发现,使用SSLD预训练权重,可以提升应用分类模型的精度。此外,使用SSLD预训练权重也有助于其他策略精度提升。
此外,根据**todo**,在训练中使用略低一点的分辨率,可以有效提升模型精度。同时,我们也对学习率进行了优化。
基于以上三点改进,我们训练得到模型精度为**todo**,提升**todo**
#### 2.3 EDA数据增广策略
数据增广是视觉算法中常用的优化策略,可以对模型精度有明显提升。除了传统的RandomCrop,RandomFlip等方法之外,我们还应用了RandomAugment和RandomErasing。
您可以在[这里](../advanced_tutorials/DataAugmentation.md)找到详细介绍。
由于这两种数据增强对图片的修改较大,使任务变难,在一些小数据集上可能会导致模型欠拟合,我们将这两种方法启用的概率设为10%。
基于以上改进,我们训练得到模型精度为**todo**,提升**todo**
#### 2.4 SKL-UGI模型蒸馏
模型蒸馏是一种可以有效提升小模型精度的方法,您可以在[这里](todo@ruoyu)找到详细介绍。
我们选择ResNet101作为教师模型进行蒸馏。
**todo @cuicheng,对lr_mult进行说明**
基于以上改进,我们训练得到模型精度为**todo**,提升:**todo。
#### 2.5 总结
经过以上方法优化,PP-LCNet最终精度达到**todo**,达到了大模型的精度水平。我们将实验结果总结如下表:
**todo**
我们在其他9个场景中也使用了同样的优化策略,得到如下结果:
**todo**
从结果可以看出,PULC优化方法在多个应用场景中均可提升模型精度。虽然并非每种方法都有正向收益,但是使用PULC可以大大减少模型优化的工作量,快速得到精度较高的模型。
### 3. 超参搜索
在上述训练过程中,我们调节了学习率、数据增广方法开启概率、分阶段学习率倍数等参数。
这些参数在不同场景中最优值可能并不相同。我们提供了一个快速超参搜索的脚本,将超参调优的过程自动化。
这个脚本会遍历搜索值列表中的参数来替代默认配置中的参数,依次训练,最终选择精度最高的模型所对应的参数作为搜索结果。
#### 3.1 基于默认配置搜索
配置文件[search.yaml](todo)定义了有人/无人场景超参搜索的配置,使用命令**todo**,可以使用默认的超参数搜索配置进行训练,最终可得训练结果为:
**todo**
#### 3.2 自定义搜索配置
您也可以根据训练结果或调参经验,修改超参搜索的配置。
修改**todo**字段,可以修改学习率搜索值列表;
修改**todo**字段,可以修改RandAugment开启概率的搜索值列表;
修改**todo**字段,可以修改RnadomErasing开启概率的搜索值列表;
修改**todo**字段,可以修改lr_mult搜索值列表;
修改**todo**字段,可以修改教师模型的搜索列表。
...@@ -39,20 +39,20 @@ ...@@ -39,20 +39,20 @@
该案例提供了用户使用 PaddleClas 的超轻量图像分类方案(PULC,Practical Ultra Lightweight Classification)快速构建轻量级、高精度、可落地的车辆属性识别模型。该模型可以广泛应用于车辆识别、道路监控等场景。 该案例提供了用户使用 PaddleClas 的超轻量图像分类方案(PULC,Practical Ultra Lightweight Classification)快速构建轻量级、高精度、可落地的车辆属性识别模型。该模型可以广泛应用于车辆识别、道路监控等场景。
下表列出了不同车辆属性识别模型的相关指标,前两行展现了使用 Res2Net200_vd_26w_4s 和 MobileNetV3_large_x1_0 作为 backbone 训练得到的模型的相关指标,第三行至第六行依次展现了替换 backbone 为 PPLCNet_x1_0、使用 SSLD 预训练模型、使用 SSLD 预训练模型 + EDA 策略、使用 SSLD 预训练模型 + EDA 策略 + SKL-UGI 知识蒸馏策略训练得到的模型的相关指标。 下表列出了不同车辆属性识别模型的相关指标,前两行展现了使用 Res2Net200_vd_26w_4s 和 MobileNetV3_small_x0_35 作为 backbone 训练得到的模型的相关指标,第三行至第六行依次展现了替换 backbone 为 PPLCNet_x1_0、使用 SSLD 预训练模型、使用 SSLD 预训练模型 + EDA 策略、使用 SSLD 预训练模型 + EDA 策略 + SKL-UGI 知识蒸馏策略训练得到的模型的相关指标。
| 模型 | ma(%) | 延时(ms) | 存储(M) | 策略 | | 模型 | ma(%) | 延时(ms) | 存储(M) | 策略 |
|-------|-----------|----------|---------------|---------------| |-------|-----------|----------|---------------|---------------|
| Res2Net200_vd_26w_4s | 91.36 | 79.46 | 293 | 使用ImageNet预训练模型 | | Res2Net200_vd_26w_4s | 91.36 | 79.46 | 293 | 使用ImageNet预训练模型 |
| ResNet50 | 89.98 | 12.83 | 92 | 使用ImageNet预训练模型 | | ResNet50 | 89.98 | 12.83 | 92 | 使用ImageNet预训练模型 |
| MobileNetV3_large_x1_0 | 89.77 | 5.09 | 23 | 使用ImageNet预训练模型 | | MobileNetV3_small_x0_35 | 87.41 | 2.91 | 2.8 | 使用ImageNet预训练模型 |
| PPLCNet_x1_0 | 89.57 | 2.36 | 8.2 | 使用ImageNet预训练模型 | | PPLCNet_x1_0 | 89.57 | 2.36 | 8.2 | 使用ImageNet预训练模型 |
| PPLCNet_x1_0 | 90.07 | 2.36 | 8.2 | 使用SSLD预训练模型 | | PPLCNet_x1_0 | 90.07 | 2.36 | 8.2 | 使用SSLD预训练模型 |
| PPLCNet_x1_0 | 90.59 | 2.36 | 8.2 | 使用SSLD预训练模型+EDA策略| | PPLCNet_x1_0 | 90.59 | 2.36 | 8.2 | 使用SSLD预训练模型+EDA策略|
| <b>PPLCNet_x1_0<b> | <b>90.81<b> | <b>2.36<b> | <b>8.2<b> | 使用SSLD预训练模型+EDA策略+SKL-UGI知识蒸馏策略| | <b>PPLCNet_x1_0<b> | <b>90.81<b> | <b>2.36<b> | <b>8.2<b> | 使用SSLD预训练模型+EDA策略+SKL-UGI知识蒸馏策略|
从表中可以看出,backbone 为 Res2Net200_vd_26w_4s 时精度较高,但是推理速度较慢。将 backbone 替换为轻量级模型 MobileNetV3_large_x1_0 后,速度可以大幅提升,但是精度下降明显。将 backbone 替换为 PPLCNet_x1_0 时,精度低0.2%,但是速度提升 1 倍左右。在此基础上,使用 SSLD 预训练模型后,在不改变推理速度的前提下,精度可以提升约 0.5%,进一步地,当融合EDA策略后,精度可以再提升 0.52%,最后,在使用 SKL-UGI 知识蒸馏后,精度可以继续提升 0.23%。此时,PPLCNet_x1_0 的精度与 Res2Net200_vd_26w_4s 仅相差0.55%,但是速度快32倍。关于 PULC 的训练方法和推理部署方法将在下面详细介绍。 从表中可以看出,backbone 为 Res2Net200_vd_26w_4s 时精度较高,但是推理速度较慢。将 backbone 替换为轻量级模型 MobileNetV3_small_x0_35 后,速度可以大幅提升,但是精度下降明显。将 backbone 替换为 PPLCNet_x1_0 时,精度提升 2.16%,同时速度也提升 23% 左右。在此基础上,使用 SSLD 预训练模型后,在不改变推理速度的前提下,精度可以提升约 0.5%,进一步地,当融合EDA策略后,精度可以再提升 0.52%,最后,在使用 SKL-UGI 知识蒸馏后,精度可以继续提升 0.23%。此时,PPLCNet_x1_0 的精度与 Res2Net200_vd_26w_4s 仅相差0.55%,但是速度快32倍。关于 PULC 的训练方法和推理部署方法将在下面详细介绍。
**备注:** **备注:**
...@@ -63,8 +63,48 @@ ...@@ -63,8 +63,48 @@
## 2. 模型快速体验 ## 2. 模型快速体验
<a name="2.1"></a>
### 2.1 安装 paddleclas
使用如下命令快速安装 paddlepaddle, paddleclas
```bash
pip3 install paddlepaddle paddleclas
```
<a name="2.2"></a>
### 2.2 预测
* 使用命令行快速预测
```bash
paddleclas --model_name vehicle_attribute --infer_imgs PaddleClas/deploy/images/PULC/vehicle_attribute/0002_c002_00030670_0.jpg
```
结果如下:
```
>>> result
attributes: Color: (yellow, prob: 0.9893476963043213), Type: (hatchback, prob: 0.9734097719192505), output: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], filename: PaddleClas/deploy/images/PULC/vehicle_attribute/0002_c002_00030670_0.jpg
ppcls INFO: Predict complete!
```
**备注**: 更换其他预测的数据时,只需要改变 `--infer_imgs=xx` 中的字段即可,支持传入整个文件夹。
* 在 Python 代码中预测
```python
import paddleclas
model = paddleclas.PaddleClas(model_name="vehicle_attribute")
result = model.predict(input_data="PaddleClas/deploy/images/PULC/vehicle_attribute/0002_c002_00030670_0.jpg")
print(next(result))
```
**备注**`model.predict()` 为可迭代对象(`generator`),因此需要使用 `next()` 函数或 `for` 循环对其迭代调用。每次调用将以 `batch_size` 为单位进行一次预测,并返回预测结果, 默认 `batch_size` 为 1,如果需要更改 `batch_size`,实例化模型时,需要指定 `batch_size`,如 `model = paddleclas.PaddleClas(model_name="person_exists", batch_size=2)`, 使用默认的代码返回结果示例如下:
``` ```
(pip方式,待补充) result
[{'attributes': 'Color: (yellow, prob: 0.9893476963043213), Type: (hatchback, prob: 0.9734097719192505)', 'output': [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], 'filename': 'PaddleClas/deploy/images/PULC/vehicle_attribute/0002_c002_00030670_0.jpg'}]
``` ```
<a name="3"></a> <a name="3"></a>
...@@ -94,10 +134,10 @@ ...@@ -94,10 +134,10 @@
部分数据可视化如下所示。 部分数据可视化如下所示。
<div align="center"> <div align="center">
<img src="../../images/PULC/docs/vehicle_attr_data_demo.png" width = "500" /> <img src="../../images/PULC/docs/vehicle_attribute_data_demo.png" width = "500" />
</div> </div>
首先从[VeRi数据集官网](https://www.v7labs.com/open-datasets/veri-dataset)中申请并下载数据,放在PaddleClas的`dataset`目录下,数据集目录名为`VeRi`,使用下面的命令进入该文件夹。 首先从[VeRi数据集官网](https://www.v7labs.com/open-datasets/veri-dataset)中申请并下载数据,放在PaddleClas的`dataset`目录下,数据集目录名为`VeRi`,使用下面的命令进入该文件夹。
```shell ```shell
cd PaddleClas/dataset/VeRi/ cd PaddleClas/dataset/VeRi/
...@@ -172,17 +212,17 @@ VeRi ...@@ -172,17 +212,17 @@ VeRi
### 3.3 模型训练 ### 3.3 模型训练
`ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0.yaml` 中提供了基于该场景的训练配置,可以通过如下脚本启动训练: `ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml` 中提供了基于该场景的训练配置,可以通过如下脚本启动训练:
```shell ```shell
export CUDA_VISIBLE_DEVICES=0,1,2,3 export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \ python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \ --gpus="0,1,2,3" \
tools/train.py \ tools/train.py \
-c ./ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0.yaml -c ./ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml
``` ```
验证集的最佳指标在 `90.07%` 左右(数据集较小,一般有0.3%左右的波动)。 验证集的最佳指标在 `90.59%` 左右(数据集较小,一般有0.3%左右的波动)。
<a name="3.4"></a> <a name="3.4"></a>
...@@ -193,7 +233,7 @@ python3 -m paddle.distributed.launch \ ...@@ -193,7 +233,7 @@ python3 -m paddle.distributed.launch \
```bash ```bash
python3 tools/eval.py \ python3 tools/eval.py \
-c ./ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0.yaml \ -c ./ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml \
-o Global.pretrained_model="output/PPLCNet_x1_0/best_model" -o Global.pretrained_model="output/PPLCNet_x1_0/best_model"
``` ```
...@@ -207,21 +247,21 @@ python3 tools/eval.py \ ...@@ -207,21 +247,21 @@ python3 tools/eval.py \
```bash ```bash
python3 tools/infer.py \ python3 tools/infer.py \
-c ./ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0.yaml \ -c ./ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=output/DistillationModel/best_model -o Global.pretrained_model=output/DistillationModel/best_model
``` ```
输出结果如下: 输出结果如下:
``` ```
[{'attr': 'Color: (yellow, prob: 0.9893478155136108), Type: (hatchback, prob: 0.9734100103378296)', 'pred': [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], 'file_name': './deploy/images/PULC/vehicle_attr/0002_c002_00030670_0.jpg'}] [{'attr': 'Color: (yellow, prob: 0.9893478155136108), Type: (hatchback, prob: 0.9734100103378296)', 'pred': [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], 'file_name': './deploy/images/PULC/vehicle_attribute/0002_c002_00030670_0.jpg'}]
``` ```
**备注:** **备注:**
* 这里`-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。 * 这里`-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。
* 默认是对 `./deploy/images/PULC/vehicle_attr/0002_c002_00030670_0.jpg` 进行预测,此处也可以通过增加字段 `-o Infer.infer_imgs=xxx` 对其他图片预测。 * 默认是对 `./deploy/images/PULC/vehicle_attribute/0002_c002_00030670_0.jpg` 进行预测,此处也可以通过增加字段 `-o Infer.infer_imgs=xxx` 对其他图片预测。
<a name="4"></a> <a name="4"></a>
...@@ -237,14 +277,14 @@ SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方 ...@@ -237,14 +277,14 @@ SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方
#### 4.1.1 教师模型训练 #### 4.1.1 教师模型训练
复用 `ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0.yaml` 中的超参数,训练教师模型,训练脚本如下: 复用 `ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml` 中的超参数,训练教师模型,训练脚本如下:
```shell ```shell
export CUDA_VISIBLE_DEVICES=0,1,2,3 export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \ python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \ --gpus="0,1,2,3" \
tools/train.py \ tools/train.py \
-c ./ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0.yaml \ -c ./ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml \
-o Arch.name=ResNet101_vd -o Arch.name=ResNet101_vd
``` ```
...@@ -254,14 +294,14 @@ python3 -m paddle.distributed.launch \ ...@@ -254,14 +294,14 @@ python3 -m paddle.distributed.launch \
#### 4.1.2 蒸馏训练 #### 4.1.2 蒸馏训练
配置文件`ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0_distillation.yaml`提供了`SKL-UGI知识蒸馏策略`的配置。该配置将`ResNet101_vd`当作教师模型,`PPLCNet_x1_0`当作学生模型。训练脚本如下: 配置文件`ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0_distillation.yaml`提供了`SKL-UGI知识蒸馏策略`的配置。该配置将`ResNet101_vd`当作教师模型,`PPLCNet_x1_0`当作学生模型。训练脚本如下:
```shell ```shell
export CUDA_VISIBLE_DEVICES=0,1,2,3 export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \ python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \ --gpus="0,1,2,3" \
tools/train.py \ tools/train.py \
-c ./ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0_distillation.yaml \ -c ./ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0_distillation.yaml \
-o Arch.models.0.Teacher.pretrained=output/ResNet101_vd/best_model -o Arch.models.0.Teacher.pretrained=output/ResNet101_vd/best_model
``` ```
...@@ -296,14 +336,14 @@ Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端 ...@@ -296,14 +336,14 @@ Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端
```bash ```bash
python3 tools/export_model.py \ python3 tools/export_model.py \
-c ./ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0.yaml \ -c ./ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=output/DistillationModel/best_model_student \ -o Global.pretrained_model=output/DistillationModel/best_model_student \
-o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_vehicle_attr_infer -o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_vehicle_attribute_infer
``` ```
执行完该脚本后会在 `deploy/models/` 下生成 `PPLCNet_x1_0_vehicle_attr_infer` 文件夹,`models` 文件夹下应有如下文件结构: 执行完该脚本后会在 `deploy/models/` 下生成 `PPLCNet_x1_0_vehicle_attributeibute_infer` 文件夹,`models` 文件夹下应有如下文件结构:
``` ```
├── PPLCNet_x1_0_vehicle_attr_infer ├── PPLCNet_x1_0_vehicle_attribute_infer
│ ├── inference.pdiparams │ ├── inference.pdiparams
│ ├── inference.pdiparams.info │ ├── inference.pdiparams.info
│ └── inference.pdmodel │ └── inference.pdmodel
...@@ -320,13 +360,13 @@ python3 tools/export_model.py \ ...@@ -320,13 +360,13 @@ python3 tools/export_model.py \
``` ```
cd deploy/models cd deploy/models
# 下载 inference 模型并解压 # 下载 inference 模型并解压
wget https://paddleclas.bj.bcebos.com/models/PULC/vehicle_attr_infer.tar && tar -xf vehicle_attr_infer.tar wget https://paddleclas.bj.bcebos.com/models/PULC/vehicle_attribute_infer.tar && tar -xf vehicle_attribute_infer.tar
``` ```
解压完毕后,`models` 文件夹下应有如下文件结构: 解压完毕后,`models` 文件夹下应有如下文件结构:
``` ```
├── vehicle_attr_infer ├── vehicle_attribute_infer
│ ├── inference.pdiparams │ ├── inference.pdiparams
│ ├── inference.pdiparams.info │ ├── inference.pdiparams.info
│ └── inference.pdmodel │ └── inference.pdmodel
...@@ -347,13 +387,13 @@ wget https://paddleclas.bj.bcebos.com/models/PULC/vehicle_attr_infer.tar && tar ...@@ -347,13 +387,13 @@ wget https://paddleclas.bj.bcebos.com/models/PULC/vehicle_attr_infer.tar && tar
cd ../ cd ../
``` ```
运行下面的命令,对图像 `./images/PULC/vehicle_attr/0002_c002_00030670_0.jpg` 进行车辆属性识别。 运行下面的命令,对图像 `./images/PULC/vehicle_attribute/0002_c002_00030670_0.jpg` 进行车辆属性识别。
```shell ```shell
# 使用下面的命令使用 GPU 进行预测 # 使用下面的命令使用 GPU 进行预测
python3.7 python/predict_cls.py -c configs/PULC/vehicle_attr/inference_vehicle_attr.yaml -o Global.use_gpu=True python3.7 python/predict_cls.py -c configs/PULC/vehicle_attribute/inference_vehicle_attribute.yaml -o Global.use_gpu=True
# 使用下面的命令使用 CPU 进行预测 # 使用下面的命令使用 CPU 进行预测
python3.7 python/predict_cls.py -c configs/PULC/vehicle_attr/inference_vehicle_attr.yaml -o Global.use_gpu=False python3.7 python/predict_cls.py -c configs/PULC/vehicle_attribute/inference_vehicle_attribute.yaml -o Global.use_gpu=False
``` ```
输出结果如下。 输出结果如下。
...@@ -371,7 +411,7 @@ predict output: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] ...@@ -371,7 +411,7 @@ predict output: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
```shell ```shell
# 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False # 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False
python3.7 python/predict_cls.py -c configs/PULC/vehicle_attr/inference_vehicle_attr.yaml -o Global.infer_imgs="./images/PULC/vehicle_attr/" python3.7 python/predict_cls.py -c configs/PULC/vehicle_attribute/inference_vehicle_attribute.yaml -o Global.infer_imgs="./images/PULC/vehicle_attribute/"
``` ```
终端中会输出该文件夹内所有图像的属性识别结果,如下所示。 终端中会输出该文件夹内所有图像的属性识别结果,如下所示。
......
...@@ -11,8 +11,9 @@ ...@@ -11,8 +11,9 @@
- [1.2 PaddleClas支持的知识蒸馏算法](#1.2) - [1.2 PaddleClas支持的知识蒸馏算法](#1.2)
- [1.2.1 SSLD](#1.2.1) - [1.2.1 SSLD](#1.2.1)
- [1.2.2 DML](#1.2.2) - [1.2.2 DML](#1.2.2)
- [1.2.3 AFD](#1.2.3) - [1.2.3 UDML](#1.2.3)
- [1.2.4 DKD](#1.2.4) - [1.2.4 AFD](#1.2.4)
- [1.2.5 DKD](#1.2.5)
- [2. 使用方法](#2) - [2. 使用方法](#2)
- [2.1 环境配置](#2.1) - [2.1 环境配置](#2.1)
- [2.2 数据准备](#2.2) - [2.2 数据准备](#2.2)
...@@ -196,9 +197,80 @@ Loss: ...@@ -196,9 +197,80 @@ Loss:
<a name='1.2.3'></a> <a name='1.2.3'></a>
#### 1.2.3 AFD #### 1.2.3 UDML
##### 1.2.3.1 AFD 算法介绍 ##### 1.2.3.1 UDML 算法介绍
论文信息:
UDML 是百度飞桨视觉团队提出的无需依赖教师模型的知识蒸馏算法,它基于DML进行改进,在蒸馏的过程中,除了考虑两个模型的输出信息,也考虑两个模型的中间层特征信息,从而进一步提升知识蒸馏的精度。更多关于UDML的说明与应用,请参考[PP-ShiTu论文](https://arxiv.org/abs/2111.00775)以及[PP-OCRv3论文](https://arxiv.org/abs/2109.03144)
在ImageNet1k公开数据集上,效果如下所示。
| 策略 | 骨干网络 | 配置文件 | Top-1 acc | 下载链接 |
| --- | --- | --- | --- | --- |
| baseline | PPLCNet_x2_5 | [PPLCNet_x2_5.yaml](../../../ppcls/configs/ImageNet/PPLCNet/PPLCNet_x2_5.yaml) | 74.93% | - |
| UDML | PPLCNet_x2_5 | [PPLCNet_x2_5_dml.yaml](../../../ppcls/configs/ImageNet/Distillation/PPLCNet_x2_5_udml.yaml) | 76.74%(**+1.81%**) | - |
##### 1.2.3.2 UDML 配置
```yaml
Arch:
name: "DistillationModel"
class_num: &class_num 1000
# if not null, its lengths should be same as models
pretrained_list:
# if not null, its lengths should be same as models
freeze_params_list:
- False
- False
models:
- Teacher:
name: PPLCNet_x2_5
class_num: *class_num
pretrained: False
# return_patterns表示除了返回输出的logits,也会返回对应名称的中间层feature map
return_patterns: ["blocks3", "blocks4", "blocks5", "blocks6"]
- Student:
name: PPLCNet_x2_5
class_num: *class_num
pretrained: False
return_patterns: ["blocks3", "blocks4", "blocks5", "blocks6"]
# loss function config for traing/eval process
Loss:
Train:
- DistillationGTCELoss:
weight: 1.0
key: logits
model_names: ["Student", "Teacher"]
- DistillationDMLLoss:
weight: 1.0
key: logits
model_name_pairs:
- ["Student", "Teacher"]
- DistillationDistanceLoss: # 基于蒸馏结果的距离loss,这里默认使用l2 loss计算block5之间的损失函数
weight: 1.0
key: "blocks5"
model_name_pairs:
- ["Student", "Teacher"]
Eval:
- CELoss:
weight: 1.0
```
**注意(:** 上述在网络中指定`return_patterns`,返回中间层特征的功能是基于TheseusLayer,更多关于TheseusLayer的使用说明,请参考:[TheseusLayer 使用说明](./theseus_layer.md)
<a name='1.2.4'></a>
#### 1.2.4 AFD
##### 1.2.4.1 AFD 算法介绍
论文信息: 论文信息:
...@@ -220,7 +292,7 @@ AFD提出在蒸馏的过程中,利用基于注意力的元网络学习特征 ...@@ -220,7 +292,7 @@ AFD提出在蒸馏的过程中,利用基于注意力的元网络学习特征
注意:这里为了与论文的训练配置保持对齐,设置训练的迭代轮数为100epoch,因此baseline精度低于PaddleClas中开源出的模型精度(71.0%) 注意:这里为了与论文的训练配置保持对齐,设置训练的迭代轮数为100epoch,因此baseline精度低于PaddleClas中开源出的模型精度(71.0%)
##### 1.2.3.2 AFD 配置 ##### 1.2.4.2 AFD 配置
AFD配置如下所示。在模型构建Arch字段中,需要同时定义学生模型与教师模型,固定教师模型的权重。这里需要对从教师模型获取的特征进行变换,进而与学生模型进行损失函数的计算。在损失函数Loss字段中,需要定义`DistillationKLDivLoss`(学生与教师之间的KL-Div loss)、`AFDLoss`(学生与教师之间的AFD loss)以及`DistillationGTCELoss`(学生与教师关于真值标签的CE loss),作为训练的损失函数。 AFD配置如下所示。在模型构建Arch字段中,需要同时定义学生模型与教师模型,固定教师模型的权重。这里需要对从教师模型获取的特征进行变换,进而与学生模型进行损失函数的计算。在损失函数Loss字段中,需要定义`DistillationKLDivLoss`(学生与教师之间的KL-Div loss)、`AFDLoss`(学生与教师之间的AFD loss)以及`DistillationGTCELoss`(学生与教师关于真值标签的CE loss),作为训练的损失函数。
...@@ -305,11 +377,11 @@ Loss: ...@@ -305,11 +377,11 @@ Loss:
**注意(:** 上述在网络中指定`return_patterns`,返回中间层特征的功能是基于TheseusLayer,更多关于TheseusLayer的使用说明,请参考:[TheseusLayer 使用说明](./theseus_layer.md) **注意(:** 上述在网络中指定`return_patterns`,返回中间层特征的功能是基于TheseusLayer,更多关于TheseusLayer的使用说明,请参考:[TheseusLayer 使用说明](./theseus_layer.md)
<a name='1.2.4'></a> <a name='1.2.5'></a>
#### 1.2.4 DKD #### 1.2.5 DKD
##### 1.2.4.1 DKD 算法介绍 ##### 1.2.5.1 DKD 算法介绍
论文信息: 论文信息:
...@@ -330,7 +402,7 @@ DKD将蒸馏中常用的 KD Loss 进行了解耦成为Target Class Knowledge Dis ...@@ -330,7 +402,7 @@ DKD将蒸馏中常用的 KD Loss 进行了解耦成为Target Class Knowledge Dis
| AFD | ResNet18 | [resnet34_distill_resnet18_dkd.yaml](../../../ppcls/configs/ImageNet/Distillation/resnet34_distill_resnet18_dkd.yaml) | 72.59%(**+1.79%**) | - | | AFD | ResNet18 | [resnet34_distill_resnet18_dkd.yaml](../../../ppcls/configs/ImageNet/Distillation/resnet34_distill_resnet18_dkd.yaml) | 72.59%(**+1.79%**) | - |
##### 1.2.4.2 DKD 配置 ##### 1.2.5.2 DKD 配置
DKD 配置如下所示。在模型构建Arch字段中,需要同时定义学生模型与教师模型,教师模型固定参数,且需要加载预训练模型。在损失函数Loss字段中,需要定义`DistillationDKDLoss`(学生与教师之间的DKD loss)以及`DistillationGTCELoss`(学生与教师关于真值标签的CE loss),作为训练的损失函数。 DKD 配置如下所示。在模型构建Arch字段中,需要同时定义学生模型与教师模型,教师模型固定参数,且需要加载预训练模型。在损失函数Loss字段中,需要定义`DistillationDKDLoss`(学生与教师之间的DKD loss)以及`DistillationGTCELoss`(学生与教师关于真值标签的CE loss),作为训练的损失函数。
......
...@@ -19,9 +19,13 @@ ...@@ -19,9 +19,13 @@
- [3.3 配置文件改动和说明](#3.3) - [3.3 配置文件改动和说明](#3.3)
- [3.4 启动训练](#3.4) - [3.4 启动训练](#3.4)
- [3.5 模型预测与调试](#3.5) - [3.5 模型预测与调试](#3.5)
- [3.6 模型导出与预测部署](#3.6) - [4. 模型推理部署](#4)
- [4.1 推理模型准备](#4.1)
- [4.2 基于python预测引擎推理](#4.2)
- [4.3 其他推理方式](#4.3)
<a name="1"></a>
<a name="1"></a>
## 1. 数据集 ## 1. 数据集
...@@ -37,7 +41,7 @@ ...@@ -37,7 +41,7 @@
在实际训练的过程中,将所有数据集混合在一起。由于是主体检测,这里将所有标注出的检测框对应的类别都修改为 `前景` 的类别,最终融合的数据集中只包含 1 个类别,即前景。 在实际训练的过程中,将所有数据集混合在一起。由于是主体检测,这里将所有标注出的检测框对应的类别都修改为 `前景` 的类别,最终融合的数据集中只包含 1 个类别,即前景。
<a name="2"></a> <a name="2"></a>
## 2. 模型选择 ## 2. 模型选择
...@@ -55,7 +59,7 @@ ...@@ -55,7 +59,7 @@
* 速度评测机器的 CPU 具体信息为:`Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz`,速度指标为开启 mkldnn,线程数设置为 10 测试得到。 * 速度评测机器的 CPU 具体信息为:`Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz`,速度指标为开启 mkldnn,线程数设置为 10 测试得到。
* 主体检测的预处理过程较为耗时,平均每张图在上述机器上的时间在 40~55 ms 左右,没有包含在上述的预测耗时统计中。 * 主体检测的预处理过程较为耗时,平均每张图在上述机器上的时间在 40~55 ms 左右,没有包含在上述的预测耗时统计中。
<a name="2.1"></a> <a name="2.1"></a>
### 2.1 轻量级主体检测模型 ### 2.1 轻量级主体检测模型
...@@ -72,7 +76,7 @@ PicoDet 由 [PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection) ...@@ -72,7 +76,7 @@ PicoDet 由 [PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection)
在轻量级主体检测任务中,为了更好地兼顾检测速度与效果,我们使用 PPLCNet_x2_5 作为主体检测模型的骨干网络,同时将训练与预测的图像尺度修改为了 640x640,其余配置与 [picodet_lcnet_1_5x_416_coco.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/picodet/more_config/picodet_lcnet_1_5x_416_coco.yml) 完全一致。将数据集更换为自定义的主体检测数据集,进行训练,最终得到检测模型。 在轻量级主体检测任务中,为了更好地兼顾检测速度与效果,我们使用 PPLCNet_x2_5 作为主体检测模型的骨干网络,同时将训练与预测的图像尺度修改为了 640x640,其余配置与 [picodet_lcnet_1_5x_416_coco.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/picodet/more_config/picodet_lcnet_1_5x_416_coco.yml) 完全一致。将数据集更换为自定义的主体检测数据集,进行训练,最终得到检测模型。
<a name="2.2"></a> <a name="2.2"></a>
### 2.2 服务端主体检测模型 ### 2.2 服务端主体检测模型
...@@ -93,13 +97,13 @@ PP-YOLO 由 [PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection) ...@@ -93,13 +97,13 @@ PP-YOLO 由 [PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection)
在服务端主体检测任务中,为了保证检测效果,我们使用 ResNet50vd-DCN 作为检测模型的骨干网络,使用配置文件 [ppyolov2_r50vd_dcn_365e_coco.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml),更换为自定义的主体检测数据集,进行训练,最终得到检测模型。 在服务端主体检测任务中,为了保证检测效果,我们使用 ResNet50vd-DCN 作为检测模型的骨干网络,使用配置文件 [ppyolov2_r50vd_dcn_365e_coco.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml),更换为自定义的主体检测数据集,进行训练,最终得到检测模型。
<a name="3"></a> <a name="3"></a>
## 3. 模型训练 ## 3. 模型训练
本节主要介绍怎样基于 PaddleDetection,基于自己的数据集,训练主体检测模型。 本节主要介绍怎样基于 PaddleDetection,基于自己的数据集,训练主体检测模型。
<a name="3.1"></a> <a name="3.1"></a>
### 3.1 环境准备 ### 3.1 环境准备
...@@ -116,7 +120,7 @@ pip install -r requirements.txt ...@@ -116,7 +120,7 @@ pip install -r requirements.txt
更多安装教程,请参考: [安装文档](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/docs/tutorials/INSTALL_cn.md) 更多安装教程,请参考: [安装文档](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/docs/tutorials/INSTALL_cn.md)
<a name="3.2"></a> <a name="3.2"></a>
### 3.2 数据准备 ### 3.2 数据准备
...@@ -128,7 +132,7 @@ pip install -r requirements.txt ...@@ -128,7 +132,7 @@ pip install -r requirements.txt
[{u'id': 1, u'name': u'foreground', u'supercategory': u'foreground'}] [{u'id': 1, u'name': u'foreground', u'supercategory': u'foreground'}]
``` ```
<a name="3.3"></a> <a name="3.3"></a>
### 3.3 配置文件改动和说明 ### 3.3 配置文件改动和说明
...@@ -154,7 +158,7 @@ ppyolov2_reader.yml:主要说明数据读取器配置,如 batch size,并 ...@@ -154,7 +158,7 @@ ppyolov2_reader.yml:主要说明数据读取器配置,如 batch size,并
此外,也可以根据实际情况,修改上述文件,比如,如果显存溢出,可以将 batch size 和学习率等比缩小等。 此外,也可以根据实际情况,修改上述文件,比如,如果显存溢出,可以将 batch size 和学习率等比缩小等。
<a name="3.4"></a> <a name="3.4"></a>
### 3.4 启动训练 ### 3.4 启动训练
...@@ -198,7 +202,7 @@ python -m paddle.distributed.launch --gpus 0,1,2,3 tools/train.py -c configs/ppy ...@@ -198,7 +202,7 @@ python -m paddle.distributed.launch --gpus 0,1,2,3 tools/train.py -c configs/ppy
注意:如果遇到 "`Out of memory error`" 问题, 尝试在 `ppyolov2_reader.yml` 文件中调小 `batch_size`,同时等比例调小学习率。 注意:如果遇到 "`Out of memory error`" 问题, 尝试在 `ppyolov2_reader.yml` 文件中调小 `batch_size`,同时等比例调小学习率。
<a name="3.5"></a> <a name="3.5"></a>
### 3.5 模型预测与调试 ### 3.5 模型预测与调试
...@@ -211,9 +215,11 @@ python tools/infer.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml --infer ...@@ -211,9 +215,11 @@ python tools/infer.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml --infer
`--draw_threshold` 是个可选参数. 根据 [NMS](https://ieeexplore.ieee.org/document/1699659) 的计算,不同阈值会产生不同的结果 `keep_top_k` 表示设置输出目标的最大数量,默认值为 100,用户可以根据自己的实际情况进行设定。 `--draw_threshold` 是个可选参数. 根据 [NMS](https://ieeexplore.ieee.org/document/1699659) 的计算,不同阈值会产生不同的结果 `keep_top_k` 表示设置输出目标的最大数量,默认值为 100,用户可以根据自己的实际情况进行设定。
<a name="3.6"></a> <a name="4"></a>
## 4. 模型推理部署
### 3.6 模型导出与预测部署。 <a name="4.1"></a>
### 4.1 推理模型准备
执行导出模型脚本: 执行导出模型脚本:
...@@ -225,15 +231,21 @@ python tools/export_model.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml ...@@ -225,15 +231,21 @@ python tools/export_model.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml
注意: `PaddleDetection` 导出的 inference 模型的文件格式为 `model.xxx`,这里如果希望与 PaddleClas 的 inference 模型文件格式保持一致,需要将其 `model.xxx` 文件修改为 `inference.xxx` 文件,用于后续主体检测的预测部署。 注意: `PaddleDetection` 导出的 inference 模型的文件格式为 `model.xxx`,这里如果希望与 PaddleClas 的 inference 模型文件格式保持一致,需要将其 `model.xxx` 文件修改为 `inference.xxx` 文件,用于后续主体检测的预测部署。
更多模型导出教程,请参考: [EXPORT_MODEL](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/deploy/EXPORT_MODEL.md) 更多模型导出教程,请参考: [EXPORT_MODEL](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/deploy/EXPORT_MODEL.md)
最终,目录 `inference/ppyolov2_r50vd_dcn_365e_coco` 中包含 `inference.pdiparams`, `inference.pdiparams.info` 以及 `inference.pdmodel` 文件,其中 `inference.pdiparams` 为保存的 inference 模型权重文件,`inference.pdmodel` 为保存的 inference 模型结构文件。 最终,目录 `inference/ppyolov2_r50vd_dcn_365e_coco` 中包含 `inference.pdiparams`, `inference.pdiparams.info` 以及 `inference.pdmodel` 文件,其中 `inference.pdiparams` 为保存的 inference 模型权重文件,`inference.pdmodel` 为保存的 inference 模型结构文件。
<a name="4.2"></a>
### 4.2 基于python预测引擎推理
导出模型之后,在主体检测与识别任务中,就可以将检测模型的路径更改为该 inference 模型路径,完成预测。 导出模型之后,在主体检测与识别任务中,就可以将检测模型的路径更改为该 inference 模型路径,完成预测。
以商品识别为例,其配置文件为 [inference_product.yaml](../../../deploy/configs/inference_product.yaml),修改其中的 `Global.det_inference_model_dir` 字段为导出的主体检测 inference 模型目录,参考[图像识别快速开始教程](../quick_start/quick_start_recognition.md),即可完成商品检测与识别过程。 以商品识别为例,其配置文件为 [inference_product.yaml](../../../deploy/configs/inference_product.yaml),修改其中的 `Global.det_inference_model_dir` 字段为导出的主体检测 inference 模型目录,参考[图像识别快速开始教程](../quick_start/quick_start_recognition.md),即可完成商品检测与识别过程。
<a name="4.3"></a>
### 4.3 其他推理方式
其他推理方法,如C++推理部署、PaddleServing部署等请参考[检测模型推理部署](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/deploy/README.md)
### FAQ ### FAQ
......
# 向量检索 # 向量检索
## 目录
- [1. 向量检索应用场景介绍](#1)
- [2. 向量检索算法介绍](#2)
- [2.1 HNSW](#2.1)
- [2.2 IVF](#2.2)
- [2.3 FLAT](#2.3)
- [3. 检索库安装](#3)
- [4. 使用及配置文档介绍](#4)
- [4.1 建库及配置文件参数](#4.1)
- [4.2 检索配置文件参数](#4.2)
<a name="1"></a>
## 1. 向量检索应用场景介绍
向量检索技术在图像识别、图像检索中应用比较广泛。其主要目标是,对于给定的查询向量,在已经建立好的向量库中,与库中所有的待查询向量,进行特征向量的相似度或距离计算,得到相似度排序。在图像识别系统中,我们使用 [Faiss](https://github.com/facebookresearch/faiss) 对此部分进行支持,具体信息请详查 [Faiss 官网](https://github.com/facebookresearch/faiss)`Faiss` 主要有以下优势 向量检索技术在图像识别、图像检索中应用比较广泛。其主要目标是,对于给定的查询向量,在已经建立好的向量库中,与库中所有的待查询向量,进行特征向量的相似度或距离计算,得到相似度排序。在图像识别系统中,我们使用 [Faiss](https://github.com/facebookresearch/faiss) 对此部分进行支持,具体信息请详查 [Faiss 官网](https://github.com/facebookresearch/faiss)`Faiss` 主要有以下优势
- 适配性好:支持 Windos、Linux、MacOS 系统 - 适配性好:支持 Windos、Linux、MacOS 系统
...@@ -20,17 +36,33 @@ ...@@ -20,17 +36,33 @@
-------------------------- --------------------------
## 目录 <a name="2"></a>
## 2. 使用的检索算法
目前 `PaddleClas` 中检索模块,支持三种检索算法**HNSW32****IVF****FLAT**。每种检索算法,满足不同场景。其中 `HNSW32` 为默认方法,此方法的检索精度、检索速度可以取得一个较好的平衡,具体算法介绍可以查看[官方文档](https://github.com/facebookresearch/faiss/wiki)
<a name="2.1"></a>
### 2.1 HNSW方法
此方法为图索引方法,如下图所示,在建立索引的时候,分为不同的层,所以检索精度较高,速度较快,但是特征库只支持添加图像功能,不支持删除图像特征功能。基于图的向量检索算法在向量检索的评测中性能都是比较优异的。如果比较在乎检索算法的效率,而且可以容忍一定的空间成本,多数场景下比较推荐基于图的检索算法。而HNSW是一种典型的,应用广泛的图算法,很多分布式检索引擎都对HNSW算法进行了分布式改造,以应用于高并发,大数据量的线上查询。此方法为默认方法。
<div align="center">
<img src="../../images/algorithm_introduction/hnsw.png" width = "400" />
</div>
<a name="2.2"></a>
### 2.2 IVF
- [1. 检索库安装](#1) 一种倒排索引检索方法。速度较快,但是精度略低。特征库支持增加、删除图像特征功能。IVF主要利用倒排的思想保存每个聚类中心下的向量,每次查询向量的时候找到最近的几个中心,分别搜索这几个中心下的向量。通过减小搜索范围,大大提升搜索效率。
- [2. 使用的检索算法](#2)
- [3. 使用及配置文档介绍](#3)
- [3.1 建库及配置文件参数](#3.1)
- [3.2 检索配置文件参数](#3.2)
<a name="1"></a> <a name="2.3"></a>
### 2.3 FLAT
## 1. 检索库安装 暴力检索算法。精度最高,但是数据量大时,检索速度较慢。特征库支持增加、删除图像特征功能。
<a name="3"></a>
## 3. 检索库安装
`Faiss` 具体安装方法如下: `Faiss` 具体安装方法如下:
...@@ -40,27 +72,16 @@ pip install faiss-cpu==1.7.1post2 ...@@ -40,27 +72,16 @@ pip install faiss-cpu==1.7.1post2
若使用时,不能正常引用,则 `uninstall` 之后,重新 `install`,尤其是 `windows` 下。 若使用时,不能正常引用,则 `uninstall` 之后,重新 `install`,尤其是 `windows` 下。
<a name="2"></a>
## 2. 使用的检索算法
目前 `PaddleClas` 中检索模块,支持如下三种检索算法
- **HNSW32**: 一种图索引方法。检索精度较高,速度较快。但是特征库只支持添加图像功能,不支持删除图像特征功能。(默认方法)
- **IVF**:倒排索引检索方法。速度较快,但是精度略低。特征库支持增加、删除图像特征功能。
- **FLAT**: 暴力检索算法。精度最高,但是数据量大时,检索速度较慢。特征库支持增加、删除图像特征功能。
每种检索算法,满足不同场景。其中 `HNSW32` 为默认方法,此方法的检索精度、检索速度可以取得一个较好的平衡,具体算法介绍可以查看[官方文档](https://github.com/facebookresearch/faiss/wiki)
<a name="3"></a> <a name="4"></a>
## 3. 使用及配置文档介绍 ## 4. 使用及配置文档介绍
涉及检索模块配置文件位于:`deploy/configs/` 下,其中 `build_*.yaml` 是建立特征库的相关配置文件,`inference_*.yaml` 是检索或者分类的推理配置文件。 涉及检索模块配置文件位于:`deploy/configs/` 下,其中 `inference_*.yaml` 是检索或者分类的推理配置文件,同时也是建立特征库的相关配置文件。
<a name="3.1"></a> <a name="4.1"></a>
### 3.1 建库及配置文件参数 ### 4.1 建库及配置文件参数
建库的具体操作如下: 建库的具体操作如下:
...@@ -68,14 +89,14 @@ pip install faiss-cpu==1.7.1post2 ...@@ -68,14 +89,14 @@ pip install faiss-cpu==1.7.1post2
# 进入 deploy 目录 # 进入 deploy 目录
cd deploy cd deploy
# yaml 文件根据需要改成自己所需的具体 yaml 文件 # yaml 文件根据需要改成自己所需的具体 yaml 文件
python python/build_gallery.py -c configs/build_***.yaml python python/build_gallery.py -c configs/inference_***.yaml
``` ```
其中 `yaml` 文件的建库的配置如下,在运行时,请根据实际情况进行修改。建库操作会将根据 `data_file` 的图像列表,将 `image_root` 下的图像进行特征提取,并在 `index_dir` 下进行存储,以待后续检索使用。 其中 `yaml` 文件的建库的配置如下,在运行时,请根据实际情况进行修改。建库操作会将根据 `data_file` 的图像列表,将 `image_root` 下的图像进行特征提取,并在 `index_dir` 下进行存储,以待后续检索使用。
其中 `data_file` 文件存储的是图像文件的路径和标签,每一行的格式为:`image_path label`。中间间隔以 `yaml` 文件中 `delimiter` 参数作为间隔。 其中 `data_file` 文件存储的是图像文件的路径和标签,每一行的格式为:`image_path label`。中间间隔以 `yaml` 文件中 `delimiter` 参数作为间隔。
关于特征提取的具体模型参数,可查看 `yaml` 文件。 关于特征提取的具体模型参数,可查看 `yaml` 文件。注意下面的配置参数只列举了建立索引库相关部分。
```yaml ```yaml
# indexing engine config # indexing engine config
...@@ -88,6 +109,7 @@ IndexProcess: ...@@ -88,6 +109,7 @@ IndexProcess:
delimiter: "\t" delimiter: "\t"
dist_type: "IP" dist_type: "IP"
embedding_size: 512 embedding_size: 512
batch_size: 32
``` ```
- **index_method**:使用的检索算法。目前支持三种,HNSW32、IVF、Flat - **index_method**:使用的检索算法。目前支持三种,HNSW32、IVF、Flat
...@@ -98,23 +120,29 @@ IndexProcess: ...@@ -98,23 +120,29 @@ IndexProcess:
- **delimiter****data_file** 中每一行的间隔符 - **delimiter****data_file** 中每一行的间隔符
- **dist_type**: 特征匹配过程中使用的相似度计算方式。例如 `IP` 内积相似度计算方式,`L2` 欧式距离计算方法 - **dist_type**: 特征匹配过程中使用的相似度计算方式。例如 `IP` 内积相似度计算方式,`L2` 欧式距离计算方法
- **embedding_size**:特征维度 - **embedding_size**:特征维度
- **batch_size**:建立特征库时,特征提取的`batch_size`
<a name="3.2"></a> <a name="4.2"></a>
### 4.2 检索配置文件参数
### 3.2 检索配置文件参数
将检索的过程融合到 `PP-ShiTu` 的整体流程中,请参考 [README](../../../README_ch.md)`PP-ShiTu 图像识别系统介绍` 部分。检索具体使用操作请参考[识别快速开始文档](../quick_start/quick_start_recognition.md) 将检索的过程融合到 `PP-ShiTu` 的整体流程中,请参考 [README](../../../README_ch.md)`PP-ShiTu 图像识别系统介绍` 部分。检索具体使用操作请参考[识别快速开始文档](../quick_start/quick_start_recognition.md)
其中,检索部分配置如下,整体检索配置文件,请参考 `deploy/configs/inference_*.yaml` 文件。 其中,检索部分配置如下,整体检索配置文件,请参考 `deploy/configs/inference_*.yaml` 文件。
注意:此部分参数只是列举了离线检索相关部分参数。
```yaml ```yaml
IndexProcess: IndexProcess:
index_dir: "./recognition_demo_data_v1.1/gallery_logo/index/" index_dir: "./recognition_demo_data_v1.1/gallery_logo/index/"
return_k: 5 return_k: 5
score_thres: 0.5 score_thres: 0.5
hamming_radius: 100
``` ```
与建库配置文件不同,新参数主要如下: 与建库配置文件不同,新参数主要如下:
- `return_k`: 检索结果返回 `k` 个结果 - `return_k`: 检索结果返回 `k` 个结果
- `score_thres`: 检索匹配的阈值 - `score_thres`: 检索匹配的阈值
- `hamming_radius`: 汉明距离半径。此参数只有在使用二值特征模型,`dist_type`设置为`hamming`时才能生效。具体二值特征模型使用方法请参考[哈希编码](./deep_hashing.md)
...@@ -6,10 +6,11 @@ ...@@ -6,10 +6,11 @@
## 目录 ## 目录
- [1. 图像分类推理](#1) - [1. 图像分类模型推理](#1)
- [2. 主体检测模型推理](#2) - [2. PP-ShiTu模型推理](#2)
- [3. 特征提取模型推理](#3) - [2.1 主体检测模型推理](#2.1)
- [4. 主体检测、特征提取和向量检索串联](#4) - [2.2 特征提取模型推理](#2.2)
- [2.3 PP-ShiTu PipeLine推理](#2.3)
<a name="1"></a> <a name="1"></a>
## 1. 图像分类推理 ## 1. 图像分类推理
...@@ -42,7 +43,12 @@ python python/predict_cls.py -c configs/inference_cls.yaml ...@@ -42,7 +43,12 @@ python python/predict_cls.py -c configs/inference_cls.yaml
* 如果你希望提升评测模型速度,使用 GPU 评测时,建议开启 TensorRT 加速预测,使用 CPU 评测时,建议开启 MKL-DNN 加速预测。 * 如果你希望提升评测模型速度,使用 GPU 评测时,建议开启 TensorRT 加速预测,使用 CPU 评测时,建议开启 MKL-DNN 加速预测。
<a name="2"></a> <a name="2"></a>
## 2. 主体检测模型推理 ## 2. PP-ShiTu模型推理
PP-ShiTu整个Pipeline包含三部分:主体检测、特提取模型、特征检索。其中主体检测、特征模型可以单独推理使用。单独主体检测详见[2.1](#2.1),特征提取模型单独推理详见[2.2](#2.2), PP-ShiTu整体推理详见[2.3](#2.3)
<a name="2.1"></a>
### 2.1 主体检测模型推理
进入 PaddleClas 的 `deploy` 目录下: 进入 PaddleClas 的 `deploy` 目录下:
...@@ -70,8 +76,8 @@ python python/predict_det.py -c configs/inference_det.yaml ...@@ -70,8 +76,8 @@ python python/predict_det.py -c configs/inference_det.yaml
* `Global.use_gpu`: 是否使用 GPU 预测,默认为 `True` * `Global.use_gpu`: 是否使用 GPU 预测,默认为 `True`
<a name="3"></a> <a name="2.2"></a>
## 3. 特征提取模型推理 ### 2.2 特征提取模型推理
下面以商品特征提取为例,介绍特征提取模型推理。首先进入 PaddleClas 的 `deploy` 目录下: 下面以商品特征提取为例,介绍特征提取模型推理。首先进入 PaddleClas 的 `deploy` 目录下:
...@@ -90,7 +96,7 @@ tar -xf ./models/product_ResNet50_vd_aliproduct_v1.0_infer.tar -C ./models/ ...@@ -90,7 +96,7 @@ tar -xf ./models/product_ResNet50_vd_aliproduct_v1.0_infer.tar -C ./models/
上述预测命令可以得到一个 512 维的特征向量,直接输出在在命令行中。 上述预测命令可以得到一个 512 维的特征向量,直接输出在在命令行中。
<a name="4"></a> <a name="2.3"></a>
## 4. 主体检测、特征提取和向量检索串联 ### 2.3. PP-ShiTu PipeLine推理
主体检测、特征提取和向量检索的串联预测,可以参考图像识别[快速体验](../quick_start/quick_start_recognition.md) 主体检测、特征提取和向量检索的串联预测,可以参考图像识别[快速体验](../quick_start/quick_start_recognition.md)
...@@ -18,7 +18,7 @@ PaddleClas 支持 Python Whl 包方式进行预测,目前 Whl 包方式仅支 ...@@ -18,7 +18,7 @@ PaddleClas 支持 Python Whl 包方式进行预测,目前 Whl 包方式仅支
- [4.6 对 `NumPy.ndarray` 格式数据进行预测](#4.6) - [4.6 对 `NumPy.ndarray` 格式数据进行预测](#4.6)
- [4.7 保存预测结果](#4.7) - [4.7 保存预测结果](#4.7)
- [4.8 指定 label name](#4.8) - [4.8 指定 label name](#4.8)
<a name="1"></a> <a name="1"></a>
## 1. 安装 paddleclas ## 1. 安装 paddleclas
...@@ -212,14 +212,14 @@ print(next(result)) ...@@ -212,14 +212,14 @@ print(next(result))
```python ```python
from paddleclas import PaddleClas from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50', save_dir='./output_pre_label/') clas = PaddleClas(model_name='ResNet50', save_dir='./output_pre_label/')
infer_imgs = 'docs/images/whl/' # it can be infer_imgs folder path which contains all of images you want to predict. infer_imgs = 'docs/images/' # it can be infer_imgs folder path which contains all of images you want to predict.
result=clas.predict(infer_imgs) result=clas.predict(infer_imgs)
print(next(result)) print(next(result))
``` ```
* CLI * CLI
```bash ```bash
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/whl/' --save_dir='./output_pre_label/' paddleclas --model_name='ResNet50' --infer_imgs='docs/images/' --save_dir='./output_pre_label/'
``` ```
<a name="4.8"></a> <a name="4.8"></a>
......
# SwinTransformer # SwinTransformer
---
-----
## 目录 ## 目录
* [1. 概述](#1) - [1. 模型介绍](#1)
* [2. 精度、FLOPS 和参数量](#2) - [1.1 模型简介](#1.1)
* [3. 基于V100 GPU 的预测速度](#3) - [1.2 模型指标](#1.2)
- [1.3 Benchmark](#1.3)
- [1.3.1 基于 V100 GPU 的预测速度](#1.3.1)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [4. 模型推理部署](#4)
- [4.1 推理模型准备](#4.1)
- [4.2 基于 Python 预测引擎推理](#4.2)
- [4.3 基于 C++ 预测引擎推理](#4.3)
- [4.4 服务化部署](#4.4)
- [4.5 端侧部署](#4.5)
- [4.6 Paddle2ONNX 模型转换与预测](#4.6)
<a name='1'></a> <a name='1'></a>
## 1. 概述 ## 1. 模型介绍
### 1.1 模型简介
Swin Transformer 是一种新的视觉 Transformer 网络,可以用作计算机视觉领域的通用骨干网路。SwinTransformer 由移动窗口(shifted windows)表示的层次 Transformer 结构组成。移动窗口将自注意计算限制在非重叠的局部窗口上,同时允许跨窗口连接,从而提高了网络性能。[论文地址](https://arxiv.org/abs/2103.14030) Swin Transformer 是一种新的视觉 Transformer 网络,可以用作计算机视觉领域的通用骨干网路。SwinTransformer 由移动窗口(shifted windows)表示的层次 Transformer 结构组成。移动窗口将自注意计算限制在非重叠的局部窗口上,同时允许跨窗口连接,从而提高了网络性能。[论文地址](https://arxiv.org/abs/2103.14030)
<a name='2'></a> <a name='2'></a>
## 2. 精度、FLOPS 和参数量 ### 1.2 模型指标
| Models | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPS<br>(G) | Params<br>(M) | | Models | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPs<br>(G) | Params<br>(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:| |:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| SwinTransformer_tiny_patch4_window7_224 | 0.8069 | 0.9534 | 0.812 | 0.955 | 4.5 | 28 | | SwinTransformer_tiny_patch4_window7_224 | 0.8069 | 0.9534 | 0.812 | 0.955 | 4.5 | 28 |
| SwinTransformer_small_patch4_window7_224 | 0.8275 | 0.9613 | 0.832 | 0.962 | 8.7 | 50 | | SwinTransformer_small_patch4_window7_224 | 0.8275 | 0.9613 | 0.832 | 0.962 | 8.7 | 50 |
...@@ -32,17 +48,87 @@ Swin Transformer 是一种新的视觉 Transformer 网络,可以用作计算 ...@@ -32,17 +48,87 @@ Swin Transformer 是一种新的视觉 Transformer 网络,可以用作计算
<a name='3'></a> <a name='3'></a>
## 3. 基于 V100 GPU 的预测速度 ### 1.3 Benchmark
#### 1.3.1 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32<br/>Batch Size=1<br/>(ms) | FP32<br/>Batch Size=4<br/>(ms) | FP32<br/>Batch Size=8<br/>(ms) | | Models | Size | Latency(ms)<br>bs=1 | Latency(ms)<br>bs=4 | Latency(ms)<br>bs=8 |
| ------------------------------------------------------- | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ | |:--:|:--:|:--:|:--:|:--:|
| SwinTransformer_tiny_patch4_window7_224 | 224 | 256 | 6.59 | 9.68 | 16.32 | | SwinTransformer_tiny_patch4_window7_224 | 224 | 6.59 | 9.68 | 16.32 |
| SwinTransformer_small_patch4_window7_224 | 224 | 256 | 12.54 | 17.07 | 28.08 | | SwinTransformer_small_patch4_window7_224 | 224 | 12.54 | 17.07 | 28.08 |
| SwinTransformer_base_patch4_window7_224 | 224 | 256 | 13.37 | 23.53 | 39.11 | | SwinTransformer_base_patch4_window7_224 | 224 | 13.37 | 23.53 | 39.11 |
| SwinTransformer_base_patch4_window12_384 | 384 | 384 | 19.52 | 64.56 | 123.30 | | SwinTransformer_base_patch4_window12_384 | 384 | 19.52 | 64.56 | 123.30 |
| SwinTransformer_base_patch4_window7_224<sup>[1]</sup> | 224 | 256 | 13.53 | 23.46 | 39.13 | | SwinTransformer_base_patch4_window7_224<sup>[1]</sup> | 224 | 13.53 | 23.46 | 39.13 |
| SwinTransformer_base_patch4_window12_384<sup>[1]</sup> | 384 | 384 | 19.65 | 64.72 | 123.42 | | SwinTransformer_base_patch4_window12_384<sup>[1]</sup> | 384 | 19.65 | 64.72 | 123.42 |
| SwinTransformer_large_patch4_window7_224<sup>[1]</sup> | 224 | 256 | 15.74 | 38.57 | 71.49 | | SwinTransformer_large_patch4_window7_224<sup>[1]</sup> | 224 | 15.74 | 38.57 | 71.49 |
| SwinTransformer_large_patch4_window12_384<sup>[1]</sup> | 384 | 384 | 32.61 | 116.59 | 223.23 | | SwinTransformer_large_patch4_window12_384<sup>[1]</sup> | 384 | 32.61 | 116.59 | 223.23 |
[1]:基于 ImageNet22k 数据集预训练,然后在 ImageNet1k 数据集迁移学习得到。 [1]:基于 ImageNet22k 数据集预训练,然后在 ImageNet1k 数据集迁移学习得到。
**备注:** 精度类型为 FP32,推理过程使用 TensorRT。
<a name="2"></a>
## 2. 模型快速体验
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2-模型快速体验)
<a name="3"></a>
## 3. 模型训练、评估和预测
此部分内容包括训练环境配置、ImageNet数据的准备、SwinTransformer 在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/SwinTransformer/` 中提供了 SwinTransformer 的训练配置,可以通过如下脚本启动训练:此部分内容可以参考[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)
**备注:** 由于 SwinTransformer 系列模型默认使用的 GPU 数量为 8 个,所以在训练时,需要指定8个GPU,如`python3 -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" tools/train.py -c xxx.yaml`, 如果使用 4 个 GPU 训练,默认学习率需要减小一半,精度可能有损。
<a name="4"></a>
## 4. 模型推理部署
<a name="4.1"></a>
### 4.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#41-推理模型准备)
<a name="4.2"></a>
### 4.2 基于 Python 预测引擎推理
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#42-基于-python-预测引擎推理) 对 SwinTransformer 完成推理预测。
<a name="4.3"></a>
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
### 4.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
<a name="4.5"></a>
### 4.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
<a name="4.6"></a>
### 4.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。
此差异已折叠。
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output_lcnet_x2_5_udml
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 100
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: ./inference
AMP:
scale_loss: 128.0
use_dynamic_loss_scaling: True
# O1: mixed fp16
level: O1
# model architecture
Arch:
name: "DistillationModel"
class_num: &class_num 1000
# if not null, its lengths should be same as models
pretrained_list:
# if not null, its lengths should be same as models
freeze_params_list:
- False
- False
models:
- Teacher:
name: PPLCNet_x2_5
class_num: *class_num
pretrained: False
return_patterns: ["blocks3", "blocks4", "blocks5", "blocks6"]
- Student:
name: PPLCNet_x2_5
class_num: *class_num
pretrained: False
return_patterns: ["blocks3", "blocks4", "blocks5", "blocks6"]
# loss function config for traing/eval process
Loss:
Train:
- DistillationGTCELoss:
weight: 1.0
key: logits
model_names: ["Student", "Teacher"]
- DistillationDMLLoss:
weight: 1.0
key: logits
model_name_pairs:
- ["Student", "Teacher"]
- DistillationDistanceLoss:
weight: 1.0
key: "blocks5"
model_name_pairs:
- ["Student", "Teacher"]
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: Cosine
learning_rate: 0.4
warmup_epoch: 5
regularizer:
name: 'L2'
coeff: 0.00004
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- RandCropImage:
size: 224
- RandFlipImage:
flip_code: 1
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: True
loader:
num_workers: 8
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 256
drop_last: False
shuffle: False
loader:
num_workers: 8
use_shared_memory: True
Infer:
infer_imgs: docs/images/inference_deployment/whl_demo.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
topk: 5
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
Metric:
Train:
- DistillationTopkAcc:
model_key: "Student"
topk: [1, 5]
Eval:
- DistillationTopkAcc:
model_key: "Student"
topk: [1, 5]
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 30
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: ./inference
start_eval_epoch: 20
# model architecture
Arch:
name: MobileNetV3_small_x0_35
class_num: 10
pretrained: True
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
epsilon: 0.1
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: Cosine
learning_rate: 1.3
warmup_epoch: 5
regularizer:
name: 'L2'
coeff: 0.00001
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
image_root: ./dataset/language_classification/
cls_label_path: ./dataset/language_classification/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- RandCropImage:
size: 224
- RandFlipImage:
flip_code: 1
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 256
drop_last: False
shuffle: True
loader:
num_workers: 8
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/language_classification/
cls_label_path: ./dataset/language_classification/test_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: False
shuffle: False
loader:
num_workers: 8
use_shared_memory: True
Infer:
infer_imgs: docs/images/inference_deployment/whl_demo.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
topk: 2
class_id_map_file: ppcls/utils/PULC/language_classification_label_list.txt
Metric:
Train:
- TopkAcc:
topk: [1, 2]
Eval:
- TopkAcc:
topk: [1, 2]
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 30
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: ./inference
# model architecture
Arch:
name: PPLCNet_x1_0
class_num: 10
pretrained: True
use_ssld: True
stride_list: [2, [2, 1], [2, 1], [2, 1], [2, 1]]
lr_mult_list : [0.0, 0.4, 0.4, 0.8, 0.8, 1.0]
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
epsilon: 0.1
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: Cosine
learning_rate: 0.8
warmup_epoch: 5
regularizer:
name: 'L2'
coeff: 0.00003
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
image_root: ./dataset/language_classification/
cls_label_path: ./dataset/language_classification/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
size: [160, 80]
- RandFlipImage:
flip_code: 1
- TimmAutoAugment:
prob: 1.0
config_str: rand-m9-mstd0.5-inc1
interpolation: bicubic
img_size: [160, 80]
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- RandomErasing:
EPSILON: 1.0
sl: 0.02
sh: 1.0/3.0
r1: 0.3
attempt: 10
use_log_aspect: True
mode: pixel
sampler:
name: DistributedBatchSampler
batch_size: 256
drop_last: False
shuffle: True
loader:
num_workers: 4
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/language_classification/
cls_label_path: ./dataset/language_classification/test_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
size: [160, 80]
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Infer:
infer_imgs: deploy/images/PULC/language_classification/word_35404.png
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
size: [160, 80]
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
topk: 2
class_id_map_file: ppcls/utils/PULC/language_classification_label_list.txt
Metric:
Train:
- TopkAcc:
topk: [1, 2]
Eval:
- TopkAcc:
topk: [1, 2]
此差异已折叠。
此差异已折叠。
base_config_file: ppcls/configs/PULC/safety_helmet/PPLCNet_x1_0_search.yaml
distill_config_file: ppcls/configs/PULC/safety_helmet/PPLCNet_x1_0_distillation.yaml
gpus: 0,1,2,3
output_dir: output/search_safety_helmet
search_times: 1
search_dict:
- search_key: lrs
replace_config:
- Optimizer.lr.learning_rate
search_values: [0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.11, 0.12]
- search_key: resolutions
replace_config:
- DataLoader.Train.dataset.transform_ops.1.RandCropImage.size
- DataLoader.Train.dataset.transform_ops.3.TimmAutoAugment.img_size
search_values: [176, 192, 224]
- search_key: ra_probs
replace_config:
- DataLoader.Train.dataset.transform_ops.3.TimmAutoAugment.prob
search_values: [0.0, 0.1, 0.5]
- search_key: re_probs
replace_config:
- DataLoader.Train.dataset.transform_ops.5.RandomErasing.EPSILON
search_values: [0.0, 0.1, 0.5]
- search_key: lr_mult_list
replace_config:
- Arch.lr_mult_list
search_values:
- [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]
- [0.0, 0.4, 0.4, 0.8, 0.8, 1.0]
- [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
teacher:
algorithm: "udml"
final_replace:
Arch.lr_mult_list: Arch.models.1.Student.lr_mult_list
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册