PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考 [服务器端 C++ 预测](../../../../deploy/cpp_shitu/readme.md) 来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考 [基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md) 完成相应的预测库编译和模型预测工作。
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考 [服务器端 C++ 预测](../../../../deploy/cpp_shitu/readme.md) 来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考 [基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md) 完成相应的预测库编译和模型预测工作。
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考 [Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)。
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考 [Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)。