提交 5e064643 编写于 作者: C cuicheng01

Update product docs and configs

上级 7b77835c
Global:
rec_inference_model_dir: "./models/product_ResNet50_vd_Inshop_v1.0_infer"
rec_inference_model_dir: "./models/product_ResNet50_vd_aliproduct_v1.0_infer"
batch_size: 1
use_gpu: True
enable_mkldnn: True
......
Global:
infer_imgs: "./dataset/product_demo_data_v1.0/query"
det_inference_model_dir: "./models/ppyolov2_r50vd_dcn_mainbody_v1.0_infer"
rec_inference_model_dir: "./models/product_ResNet50_vd_Inshop_v1.0_infer"
rec_inference_model_dir: "./models/product_ResNet50_vd_aliproduct_v1.0_infer"
batch_size: 1
image_shape: [3, 640, 640]
threshold: 0.0
max_det_results: 1
threshold: 0.2
max_det_results: 2
labe_list:
- foreground
......
# 商品识别
商品识别技术,是现如今应用非常广的一个领域。拍照购物的方式已经被很多人所采纳,无人结算台已经走入各大超市,无人超市更是如火如荼,这背后都是以商品识别技术作为支撑。商品识别技术大概是"商品检测+商品识别"这样的流程,商品检测模块负责检测出潜在的商品区域,商品识别模型负责将商品检测模块检测出的主体进行识别。识别模块多采用检索的方式,根据查询图片和底库图片进行相似度排序获得预测类别。此文档主要对商品图片的特征提取部分进行相关介绍,内容包括:
- 数据集及预处理方式
- Backbone的具体设置
- Loss函数的相关设置
## 1 Aliproduct
### 1 数据集
<img src="../../images/product/aliproduct.png" style="zoom:50%;" />
Aliproduct数据是天池竞赛开源的一个数据集,也是目前开源的最大的商品数据集,其有5万多个标识类别,约250万训练图片。相关数据介绍参考[原论文](https://arxiv.org/abs/2008.05359)
### 2 图像预处理
- 图像`Resize`到224x224
- 图像`RandomFlip`
- Normlize:图像归一化
### 3 Backbone的具体设置
具体是用`ResNet50_vd`作为backbone,主要做了如下修改:
- 使用ImageNet预训练模型
- 在GAP后、分类层前加入一个512维的embedding FC层,没有做BatchNorm和激活。
配置文件如下,其中BackboneStopLayer定义了backbone的输出层,在此处为GAP经过flatten后的层,Neck部分为embedding层,也是最后表示特征的层,Head部分为分类层,其输出维度等于训练数据集的类别数。
```yaml
Arch:
name: RecModel
Backbone:
name: ResNet50_vd
pretrained: True
BackboneStopLayer:
name: flatten_0
Neck:
name: FC
embedding_size: 2048
class_num: 512
Head:
name: FC
embedding_size: 512
class_num: 50030
```
### 4 Loss的设置
在Aliproduct商品识别中,使用了[CELoss](../../../ppcls/loss/celoss.py)训练, 为了获得更加鲁棒的特征,后续会使用其他Loss参与训练,敬请期待。配置文件如下:
```yaml
Loss:
Train:
- CELoss:
weight: 1.0
Eval:
- CELoss:
weight: 1.0
```
## 2 Inshop
### 1 数据集
<img src="../../images/product/inshop.png" style="zoom:50%;" />
Inshop数据集是DeepFashion的子集,其是香港中文大学开放的一个large-scale服装数据集,Inshop数据集是其中服装检索数据集,涵盖了大量买家秀的服装。相关数据介绍参考[原论文](https://openaccess.thecvf.com/content_cvpr_2016/papers/Liu_DeepFashion_Powering_Robust_CVPR_2016_paper.pdf)
### 2 图像预处理
数据增强是训练大规模
- 图像`Resize`到224x224
- 图像`RandomFlip`
- Normlize:图像归一化
- [RandomErasing](https://arxiv.org/pdf/1708.04896v2.pdf)
### 3 Backbone的具体设置
具体是用`ResNet50_vd`作为backbone,主要做了如下修改:
- 使用ImageNet预训练模型
- 在GAP后、分类层前加入一个512维的embedding FC层,没有做BatchNorm和激活。
- 分类层采用Arcmargin Head,具体原理可参考[原论文](https://arxiv.org/pdf/1801.07698.pdf)
配置文件如下,其中BackboneStopLayer定义了backbone的输出层,在此处为GAP经过flatten后的层,Neck部分为embedding层,也是最后表示特征的层,Head部分为arcmargin head, 代码实现为[arcmargin.py](../../../ppcls/arch/gears/arcmargin.py),其输出维度等于训练数据集的类别数。
```yaml
Arch:
name: RecModel
infer_output_key: features
infer_add_softmax: False
Backbone:
name: ResNet50_vd
pretrained: False
BackboneStopLayer:
name: flatten_0
Neck:
name: FC
embedding_size: 2048
class_num: 512
Head:
name: ArcMargin
embedding_size: 512
class_num: 3997
margin: 0.15
scale: 30
```
### 4 Loss的设置
在Inshop商品识别中,使用了[CELoss](../../../ppcls/loss/celoss.py)[TripletLossV2](../../../ppcls/loss/triplet.py)联合训练。配置文件如下:
```yaml
Loss:
Train:
- CELoss:
weight: 1.0
- TripletLossV2:
weight: 1.0
margin: 0.5
Eval:
- CELoss:
weight: 1.0
```
......@@ -39,7 +39,7 @@
| Logo识别模型 | Logo场景 | [数据下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/logo_demo_data_v1.0.tar) | [模型下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/logo_rec_ResNet50_Logo3K_v1.0_infer.tar) | [inference_logo.yaml](../../../deploy/configs/inference_logo.yaml) | [build_logo.yaml](../../../deploy/configs/build_logo.yaml) |
| 动漫人物识别模型 | 动漫人物场景 | [数据下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/cartoon_demo_data_v1.0.tar) | [模型下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/cartoon_rec_ResNet50_iCartoon_v1.0_infer.tar) | [inference_cartoon.yaml](../../../deploy/configs/inference_cartoon.yaml) | [build_cartoon.yaml](../../../deploy/configs/build_cartoon.yaml) |
| 车辆细分类模型 | 车辆场景 | [数据下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/vehicle_demo_data_v1.0.tar) | [模型下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/vehicle_cls_ResNet50_CompCars_v1.0_infer.tar) | [inference_vehicle.yaml](../../../deploy/configs/inference_vehicle.yaml) | [build_vehicle.yaml](../../../deploy/configs/build_vehicle.yaml) |
| 商品识别模型 | 商品场景 | [数据下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/product_demo_data_v1.0.tar) | [模型下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/product_ResNet50_vd_Inshop_v1.0_infer.tar) | [inference_inshop.yaml](../../../deploy/configs/) | [build_inshop.yaml](../../../deploy/configs/build_inshop.yaml) |
| 商品识别模型 | 商品场景 | [数据下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/product_demo_data_v1.0.tar) | [模型下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/product_ResNet50_vd_aliproduct_v1.0_infer.tar) | [inference_product.yaml](../../../deploy/configs/inference_product.yaml) | [build_product.yaml](../../../deploy/configs/build_product.yaml) |
**注意**:windows 环境下如果没有安装wget,下载模型时可将链接复制到浏览器中下载,并解压放置在相应目录下;linux或者macOS用户可以右键点击,然后复制下载链接,即可通过`wget`命令下载。
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册