diff --git a/deploy/configs/build_inshop.yaml b/deploy/configs/build_product.yaml
similarity index 90%
rename from deploy/configs/build_inshop.yaml
rename to deploy/configs/build_product.yaml
index c2638e979ec5cac2e2b40fddcdcf6782f8922a36..987c5c0df4f80ebc048cb55f0620b846b994ef8f 100644
--- a/deploy/configs/build_inshop.yaml
+++ b/deploy/configs/build_product.yaml
@@ -1,5 +1,5 @@
Global:
- rec_inference_model_dir: "./models/product_ResNet50_vd_Inshop_v1.0_infer"
+ rec_inference_model_dir: "./models/product_ResNet50_vd_aliproduct_v1.0_infer"
batch_size: 1
use_gpu: True
enable_mkldnn: True
diff --git a/deploy/configs/inference_inshop.yaml b/deploy/configs/inference_product.yaml
similarity index 90%
rename from deploy/configs/inference_inshop.yaml
rename to deploy/configs/inference_product.yaml
index 1e7db144d1223f0c5b969d0d27f9597665f505ad..a59f5d670c0d871cbc1a60ea3f6cb506cde3a321 100644
--- a/deploy/configs/inference_inshop.yaml
+++ b/deploy/configs/inference_product.yaml
@@ -1,11 +1,11 @@
Global:
infer_imgs: "./dataset/product_demo_data_v1.0/query"
det_inference_model_dir: "./models/ppyolov2_r50vd_dcn_mainbody_v1.0_infer"
- rec_inference_model_dir: "./models/product_ResNet50_vd_Inshop_v1.0_infer"
+ rec_inference_model_dir: "./models/product_ResNet50_vd_aliproduct_v1.0_infer"
batch_size: 1
image_shape: [3, 640, 640]
- threshold: 0.0
- max_det_results: 1
+ threshold: 0.2
+ max_det_results: 2
labe_list:
- foreground
diff --git a/docs/images/product/aliproduct.png b/docs/images/product/aliproduct.png
new file mode 100644
index 0000000000000000000000000000000000000000..df2ea725223abd370b7f15ea8ea8abc5e3f4c6e4
Binary files /dev/null and b/docs/images/product/aliproduct.png differ
diff --git a/docs/images/product/inshop.png b/docs/images/product/inshop.png
new file mode 100644
index 0000000000000000000000000000000000000000..e874fdb8ec91e37948ff17e944a4e1a887f32c73
Binary files /dev/null and b/docs/images/product/inshop.png differ
diff --git a/docs/zh_CN/application/product_recognition.md b/docs/zh_CN/application/product_recognition.md
new file mode 100644
index 0000000000000000000000000000000000000000..0685cf9ce00dd03e1e80ddcf47a6d3eb00ec6806
--- /dev/null
+++ b/docs/zh_CN/application/product_recognition.md
@@ -0,0 +1,132 @@
+# 商品识别
+
+商品识别技术,是现如今应用非常广的一个领域。拍照购物的方式已经被很多人所采纳,无人结算台已经走入各大超市,无人超市更是如火如荼,这背后都是以商品识别技术作为支撑。商品识别技术大概是"商品检测+商品识别"这样的流程,商品检测模块负责检测出潜在的商品区域,商品识别模型负责将商品检测模块检测出的主体进行识别。识别模块多采用检索的方式,根据查询图片和底库图片进行相似度排序获得预测类别。此文档主要对商品图片的特征提取部分进行相关介绍,内容包括:
+
+- 数据集及预处理方式
+- Backbone的具体设置
+- Loss函数的相关设置
+
+
+## 1 Aliproduct
+
+### 1 数据集
+
+
+
+Aliproduct数据是天池竞赛开源的一个数据集,也是目前开源的最大的商品数据集,其有5万多个标识类别,约250万训练图片。相关数据介绍参考[原论文](https://arxiv.org/abs/2008.05359)。
+
+### 2 图像预处理
+
+- 图像`Resize`到224x224
+- 图像`RandomFlip`
+- Normlize:图像归一化
+
+### 3 Backbone的具体设置
+
+具体是用`ResNet50_vd`作为backbone,主要做了如下修改:
+
+ - 使用ImageNet预训练模型
+
+ - 在GAP后、分类层前加入一个512维的embedding FC层,没有做BatchNorm和激活。
+
+配置文件如下,其中BackboneStopLayer定义了backbone的输出层,在此处为GAP经过flatten后的层,Neck部分为embedding层,也是最后表示特征的层,Head部分为分类层,其输出维度等于训练数据集的类别数。
+
+```yaml
+Arch:
+ name: RecModel
+ Backbone:
+ name: ResNet50_vd
+ pretrained: True
+ BackboneStopLayer:
+ name: flatten_0
+ Neck:
+ name: FC
+ embedding_size: 2048
+ class_num: 512
+ Head:
+ name: FC
+ embedding_size: 512
+ class_num: 50030
+```
+
+### 4 Loss的设置
+
+在Aliproduct商品识别中,使用了[CELoss](../../../ppcls/loss/celoss.py)训练, 为了获得更加鲁棒的特征,后续会使用其他Loss参与训练,敬请期待。配置文件如下:
+
+```yaml
+Loss:
+ Train:
+ - CELoss:
+ weight: 1.0
+ Eval:
+ - CELoss:
+ weight: 1.0
+```
+
+## 2 Inshop
+
+### 1 数据集
+
+
+
+Inshop数据集是DeepFashion的子集,其是香港中文大学开放的一个large-scale服装数据集,Inshop数据集是其中服装检索数据集,涵盖了大量买家秀的服装。相关数据介绍参考[原论文](https://openaccess.thecvf.com/content_cvpr_2016/papers/Liu_DeepFashion_Powering_Robust_CVPR_2016_paper.pdf)。
+
+### 2 图像预处理
+
+数据增强是训练大规模
+- 图像`Resize`到224x224
+- 图像`RandomFlip`
+- Normlize:图像归一化
+- [RandomErasing](https://arxiv.org/pdf/1708.04896v2.pdf)
+
+### 3 Backbone的具体设置
+
+具体是用`ResNet50_vd`作为backbone,主要做了如下修改:
+
+ - 使用ImageNet预训练模型
+
+ - 在GAP后、分类层前加入一个512维的embedding FC层,没有做BatchNorm和激活。
+
+ - 分类层采用Arcmargin Head,具体原理可参考[原论文](https://arxiv.org/pdf/1801.07698.pdf)。
+
+配置文件如下,其中BackboneStopLayer定义了backbone的输出层,在此处为GAP经过flatten后的层,Neck部分为embedding层,也是最后表示特征的层,Head部分为arcmargin head, 代码实现为[arcmargin.py](../../../ppcls/arch/gears/arcmargin.py),其输出维度等于训练数据集的类别数。
+
+```yaml
+Arch:
+ name: RecModel
+ infer_output_key: features
+ infer_add_softmax: False
+
+ Backbone:
+ name: ResNet50_vd
+ pretrained: False
+ BackboneStopLayer:
+ name: flatten_0
+ Neck:
+ name: FC
+ embedding_size: 2048
+ class_num: 512
+ Head:
+ name: ArcMargin
+ embedding_size: 512
+ class_num: 3997
+ margin: 0.15
+ scale: 30
+```
+
+### 4 Loss的设置
+
+在Inshop商品识别中,使用了[CELoss](../../../ppcls/loss/celoss.py)和[TripletLossV2](../../../ppcls/loss/triplet.py)联合训练。配置文件如下:
+
+```yaml
+Loss:
+ Train:
+ - CELoss:
+ weight: 1.0
+ - TripletLossV2:
+ weight: 1.0
+ margin: 0.5
+ Eval:
+ - CELoss:
+ weight: 1.0
+```
diff --git a/docs/zh_CN/tutorials/quick_start_recognition.md b/docs/zh_CN/tutorials/quick_start_recognition.md
index c021549607e7c9e4ca8c9271200878d143563e85..df89fe5d33063425c6fc51f436ec28b3e14ba86d 100644
--- a/docs/zh_CN/tutorials/quick_start_recognition.md
+++ b/docs/zh_CN/tutorials/quick_start_recognition.md
@@ -39,7 +39,7 @@
| Logo识别模型 | Logo场景 | [数据下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/logo_demo_data_v1.0.tar) | [模型下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/logo_rec_ResNet50_Logo3K_v1.0_infer.tar) | [inference_logo.yaml](../../../deploy/configs/inference_logo.yaml) | [build_logo.yaml](../../../deploy/configs/build_logo.yaml) |
| 动漫人物识别模型 | 动漫人物场景 | [数据下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/cartoon_demo_data_v1.0.tar) | [模型下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/cartoon_rec_ResNet50_iCartoon_v1.0_infer.tar) | [inference_cartoon.yaml](../../../deploy/configs/inference_cartoon.yaml) | [build_cartoon.yaml](../../../deploy/configs/build_cartoon.yaml) |
| 车辆细分类模型 | 车辆场景 | [数据下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/vehicle_demo_data_v1.0.tar) | [模型下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/vehicle_cls_ResNet50_CompCars_v1.0_infer.tar) | [inference_vehicle.yaml](../../../deploy/configs/inference_vehicle.yaml) | [build_vehicle.yaml](../../../deploy/configs/build_vehicle.yaml) |
-| 商品识别模型 | 商品场景 | [数据下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/product_demo_data_v1.0.tar) | [模型下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/product_ResNet50_vd_Inshop_v1.0_infer.tar) | [inference_inshop.yaml](../../../deploy/configs/) | [build_inshop.yaml](../../../deploy/configs/build_inshop.yaml) |
+| 商品识别模型 | 商品场景 | [数据下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/product_demo_data_v1.0.tar) | [模型下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/product_ResNet50_vd_aliproduct_v1.0_infer.tar) | [inference_product.yaml](../../../deploy/configs/inference_product.yaml) | [build_product.yaml](../../../deploy/configs/build_product.yaml) |
**注意**:windows 环境下如果没有安装wget,下载模型时可将链接复制到浏览器中下载,并解压放置在相应目录下;linux或者macOS用户可以右键点击,然后复制下载链接,即可通过`wget`命令下载。