Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
5d9d2395
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5d9d2395
编写于
5月 31, 2022
作者:
C
cuicheng01
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update resnet&pp-lcnet
上级
c2daa752
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
111 addition
and
53 deletion
+111
-53
ppcls/arch/backbone/legendary_models/pp_lcnet.py
ppcls/arch/backbone/legendary_models/pp_lcnet.py
+83
-41
ppcls/arch/backbone/legendary_models/resnet.py
ppcls/arch/backbone/legendary_models/resnet.py
+28
-12
未找到文件。
ppcls/arch/backbone/legendary_models/pp_lcnet.py
浏览文件 @
5d9d2395
...
...
@@ -17,7 +17,7 @@ from __future__ import absolute_import, division, print_function
import
paddle
import
paddle.nn
as
nn
from
paddle
import
ParamAttr
from
paddle.nn
import
AdaptiveAvgPool2D
,
BatchNorm
,
Conv2D
,
Dropout
,
Linear
from
paddle.nn
import
AdaptiveAvgPool2D
,
BatchNorm
2D
,
Conv2D
,
Dropout
,
Linear
from
paddle.regularizer
import
L2Decay
from
paddle.nn.initializer
import
KaimingNormal
from
ppcls.arch.backbone.base.theseus_layer
import
TheseusLayer
...
...
@@ -83,7 +83,8 @@ class ConvBNLayer(TheseusLayer):
filter_size
,
num_filters
,
stride
,
num_groups
=
1
):
num_groups
=
1
,
lr_mult
=
1.0
):
super
().
__init__
()
self
.
conv
=
Conv2D
(
...
...
@@ -93,13 +94,13 @@ class ConvBNLayer(TheseusLayer):
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
num_groups
,
weight_attr
=
ParamAttr
(
initializer
=
KaimingNormal
()),
weight_attr
=
ParamAttr
(
initializer
=
KaimingNormal
()
,
learning_rate
=
lr_mult
),
bias_attr
=
False
)
self
.
bn
=
BatchNorm
(
self
.
bn
=
BatchNorm
2D
(
num_filters
,
param_attr
=
ParamAttr
(
regularizer
=
L2Decay
(
0.0
)
),
bias_attr
=
ParamAttr
(
regularizer
=
L2Decay
(
0.0
)))
weight_attr
=
ParamAttr
(
regularizer
=
L2Decay
(
0.0
),
learning_rate
=
lr_mult
),
bias_attr
=
ParamAttr
(
regularizer
=
L2Decay
(
0.0
)
,
learning_rate
=
lr_mult
))
self
.
hardswish
=
nn
.
Hardswish
()
def
forward
(
self
,
x
):
...
...
@@ -115,7 +116,8 @@ class DepthwiseSeparable(TheseusLayer):
num_filters
,
stride
,
dw_size
=
3
,
use_se
=
False
):
use_se
=
False
,
lr_mult
=
1.0
):
super
().
__init__
()
self
.
use_se
=
use_se
self
.
dw_conv
=
ConvBNLayer
(
...
...
@@ -123,14 +125,17 @@ class DepthwiseSeparable(TheseusLayer):
num_filters
=
num_channels
,
filter_size
=
dw_size
,
stride
=
stride
,
num_groups
=
num_channels
)
num_groups
=
num_channels
,
lr_mult
=
lr_mult
)
if
use_se
:
self
.
se
=
SEModule
(
num_channels
)
self
.
se
=
SEModule
(
num_channels
,
lr_mult
=
lr_mult
)
self
.
pw_conv
=
ConvBNLayer
(
num_channels
=
num_channels
,
filter_size
=
1
,
num_filters
=
num_filters
,
stride
=
1
)
stride
=
1
,
lr_mult
=
lr_mult
)
def
forward
(
self
,
x
):
x
=
self
.
dw_conv
(
x
)
...
...
@@ -141,7 +146,7 @@ class DepthwiseSeparable(TheseusLayer):
class
SEModule
(
TheseusLayer
):
def
__init__
(
self
,
channel
,
reduction
=
4
):
def
__init__
(
self
,
channel
,
reduction
=
4
,
lr_mult
=
1.0
):
super
().
__init__
()
self
.
avg_pool
=
AdaptiveAvgPool2D
(
1
)
self
.
conv1
=
Conv2D
(
...
...
@@ -149,14 +154,18 @@ class SEModule(TheseusLayer):
out_channels
=
channel
//
reduction
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
)
padding
=
0
,
weight_attr
=
ParamAttr
(
learning_rate
=
lr_mult
),
bias_attr
=
ParamAttr
(
learning_rate
=
lr_mult
))
self
.
relu
=
nn
.
ReLU
()
self
.
conv2
=
Conv2D
(
in_channels
=
channel
//
reduction
,
out_channels
=
channel
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
)
padding
=
0
,
weight_attr
=
ParamAttr
(
learning_rate
=
lr_mult
),
bias_attr
=
ParamAttr
(
learning_rate
=
lr_mult
))
self
.
hardsigmoid
=
nn
.
Hardsigmoid
()
def
forward
(
self
,
x
):
...
...
@@ -177,17 +186,44 @@ class PPLCNet(TheseusLayer):
class_num
=
1000
,
dropout_prob
=
0.2
,
class_expand
=
1280
,
lr_mult_list
=
[
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
],
stride_list
=
[
2
,
2
,
2
,
2
,
2
],
use_last_conv
=
True
,
return_patterns
=
None
,
return_stages
=
None
):
super
().
__init__
()
self
.
scale
=
scale
self
.
class_expand
=
class_expand
self
.
lr_mult_list
=
lr_mult_list
self
.
use_last_conv
=
use_last_conv
self
.
stride_list
=
stride_list
self
.
net_config
=
NET_CONFIG
if
isinstance
(
self
.
lr_mult_list
,
str
):
self
.
lr_mult_list
=
eval
(
self
.
lr_mult_list
)
assert
isinstance
(
self
.
lr_mult_list
,
(
list
,
tuple
)),
"lr_mult_list should be in (list, tuple) but got {}"
.
format
(
type
(
self
.
lr_mult_list
))
assert
len
(
self
.
lr_mult_list
)
==
6
,
"lr_mult_list length should be 6 but got {}"
.
format
(
len
(
self
.
lr_mult_list
))
assert
isinstance
(
self
.
stride_list
,
(
list
,
tuple
)),
"stride_list should be in (list, tuple) but got {}"
.
format
(
type
(
self
.
stride_list
))
assert
len
(
self
.
stride_list
)
==
5
,
"stride_list length should be 5 but got {}"
.
format
(
len
(
self
.
stride_list
))
for
i
,
stride
in
enumerate
(
stride_list
[
1
:]):
self
.
net_config
[
"blocks{}"
.
format
(
i
+
3
)][
0
][
3
]
=
stride
self
.
conv1
=
ConvBNLayer
(
num_channels
=
3
,
filter_size
=
3
,
num_filters
=
make_divisible
(
16
*
scale
),
stride
=
2
)
stride
=
stride_list
[
0
],
lr_mult
=
self
.
lr_mult_list
[
0
])
self
.
blocks2
=
nn
.
Sequential
(
*
[
DepthwiseSeparable
(
...
...
@@ -195,8 +231,9 @@ class PPLCNet(TheseusLayer):
num_filters
=
make_divisible
(
out_c
*
scale
),
dw_size
=
k
,
stride
=
s
,
use_se
=
se
)
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
NET_CONFIG
[
"blocks2"
])
use_se
=
se
,
lr_mult
=
self
.
lr_mult_list
[
1
])
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
self
.
net_config
[
"blocks2"
])
])
self
.
blocks3
=
nn
.
Sequential
(
*
[
...
...
@@ -205,8 +242,9 @@ class PPLCNet(TheseusLayer):
num_filters
=
make_divisible
(
out_c
*
scale
),
dw_size
=
k
,
stride
=
s
,
use_se
=
se
)
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
NET_CONFIG
[
"blocks3"
])
use_se
=
se
,
lr_mult
=
self
.
lr_mult_list
[
2
])
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
self
.
net_config
[
"blocks3"
])
])
self
.
blocks4
=
nn
.
Sequential
(
*
[
...
...
@@ -215,8 +253,9 @@ class PPLCNet(TheseusLayer):
num_filters
=
make_divisible
(
out_c
*
scale
),
dw_size
=
k
,
stride
=
s
,
use_se
=
se
)
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
NET_CONFIG
[
"blocks4"
])
use_se
=
se
,
lr_mult
=
self
.
lr_mult_list
[
3
])
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
self
.
net_config
[
"blocks4"
])
])
self
.
blocks5
=
nn
.
Sequential
(
*
[
...
...
@@ -225,8 +264,9 @@ class PPLCNet(TheseusLayer):
num_filters
=
make_divisible
(
out_c
*
scale
),
dw_size
=
k
,
stride
=
s
,
use_se
=
se
)
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
NET_CONFIG
[
"blocks5"
])
use_se
=
se
,
lr_mult
=
self
.
lr_mult_list
[
4
])
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
self
.
net_config
[
"blocks5"
])
])
self
.
blocks6
=
nn
.
Sequential
(
*
[
...
...
@@ -235,25 +275,26 @@ class PPLCNet(TheseusLayer):
num_filters
=
make_divisible
(
out_c
*
scale
),
dw_size
=
k
,
stride
=
s
,
use_se
=
se
)
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
NET_CONFIG
[
"blocks6"
])
use_se
=
se
,
lr_mult
=
self
.
lr_mult_list
[
5
])
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
self
.
net_config
[
"blocks6"
])
])
self
.
avg_pool
=
AdaptiveAvgPool2D
(
1
)
self
.
last_conv
=
Conv2D
(
in_channels
=
make_divisible
(
NET_CONFIG
[
"blocks6"
][
-
1
][
2
]
*
scale
),
out_channels
=
self
.
class_expand
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
bias_attr
=
False
)
self
.
hardswish
=
nn
.
Hardswish
()
self
.
dropout
=
Dropout
(
p
=
dropout_prob
,
mode
=
"downscale_in_infer"
)
if
self
.
use_last_conv
:
self
.
last_conv
=
Conv2D
(
in_channels
=
make_divisible
(
self
.
net_config
[
"blocks6"
][
-
1
][
2
]
*
scale
),
out_channels
=
self
.
class_expand
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
bias_attr
=
False
)
self
.
hardswish
=
nn
.
Hardswish
()
self
.
dropout
=
Dropout
(
p
=
dropout_prob
,
mode
=
"downscale_in_infer"
)
else
:
self
.
last_conv
=
None
self
.
flatten
=
nn
.
Flatten
(
start_axis
=
1
,
stop_axis
=-
1
)
self
.
fc
=
Linear
(
self
.
class_expand
,
class_num
)
self
.
fc
=
Linear
(
self
.
class_expand
if
self
.
use_last_conv
else
make_divisible
(
self
.
net_config
[
"blocks6"
][
-
1
][
2
]),
class_num
)
super
().
init_res
(
stages_pattern
,
...
...
@@ -270,9 +311,10 @@ class PPLCNet(TheseusLayer):
x
=
self
.
blocks6
(
x
)
x
=
self
.
avg_pool
(
x
)
x
=
self
.
last_conv
(
x
)
x
=
self
.
hardswish
(
x
)
x
=
self
.
dropout
(
x
)
if
self
.
last_conv
is
not
None
:
x
=
self
.
last_conv
(
x
)
x
=
self
.
hardswish
(
x
)
x
=
self
.
dropout
(
x
)
x
=
self
.
flatten
(
x
)
x
=
self
.
fc
(
x
)
return
x
...
...
ppcls/arch/backbone/legendary_models/resnet.py
浏览文件 @
5d9d2395
...
...
@@ -20,9 +20,10 @@ import numpy as np
import
paddle
from
paddle
import
ParamAttr
import
paddle.nn
as
nn
from
paddle.nn
import
Conv2D
,
BatchNorm
,
Linear
from
paddle.nn
import
Conv2D
,
BatchNorm
,
Linear
,
BatchNorm2D
from
paddle.nn
import
AdaptiveAvgPool2D
,
MaxPool2D
,
AvgPool2D
from
paddle.nn.initializer
import
Uniform
from
paddle.regularizer
import
L2Decay
import
math
from
ppcls.arch.backbone.base.theseus_layer
import
TheseusLayer
...
...
@@ -121,17 +122,21 @@ class ConvBNLayer(TheseusLayer):
self
.
is_vd_mode
=
is_vd_mode
self
.
act
=
act
self
.
avg_pool
=
AvgPool2D
(
kernel_size
=
2
,
stride
=
2
,
padding
=
0
,
ceil_mode
=
True
)
kernel_size
=
2
,
stride
=
stride
,
padding
=
"SAME"
,
ceil_mode
=
True
)
self
.
conv
=
Conv2D
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
stride
=
1
if
is_vd_mode
else
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
learning_rate
=
lr_mult
),
bias_attr
=
False
,
data_format
=
data_format
)
weight_attr
=
ParamAttr
(
learning_rate
=
lr_mult
,
trainable
=
True
)
bias_attr
=
ParamAttr
(
learning_rate
=
lr_mult
,
trainable
=
True
)
self
.
bn
=
BatchNorm
(
num_filters
,
param_attr
=
ParamAttr
(
learning_rate
=
lr_mult
),
...
...
@@ -159,7 +164,6 @@ class BottleneckBlock(TheseusLayer):
lr_mult
=
1.0
,
data_format
=
"NCHW"
):
super
().
__init__
()
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
...
...
@@ -188,10 +192,11 @@ class BottleneckBlock(TheseusLayer):
num_channels
=
num_channels
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
stride
=
stride
if
if_first
else
1
,
stride
=
stride
,
is_vd_mode
=
False
if
if_first
else
True
,
lr_mult
=
lr_mult
,
data_format
=
data_format
)
self
.
relu
=
nn
.
ReLU
()
self
.
shortcut
=
shortcut
...
...
@@ -242,7 +247,7 @@ class BasicBlock(TheseusLayer):
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
stride
=
stride
if
if_first
else
1
,
stride
=
stride
,
is_vd_mode
=
False
if
if_first
else
True
,
lr_mult
=
lr_mult
,
data_format
=
data_format
)
...
...
@@ -281,14 +286,17 @@ class ResNet(TheseusLayer):
stem_act
=
"relu"
,
class_num
=
1000
,
lr_mult_list
=
[
1.0
,
1.0
,
1.0
,
1.0
,
1.0
],
stride_list
=
[
2
,
2
,
2
,
2
,
2
],
data_format
=
"NCHW"
,
input_image_channel
=
3
,
return_patterns
=
None
,
return_stages
=
None
):
return_stages
=
None
,
**
kargs
):
super
().
__init__
()
self
.
cfg
=
config
self
.
lr_mult_list
=
lr_mult_list
self
.
stride_list
=
stride_list
self
.
is_vd_mode
=
version
==
"vd"
self
.
class_num
=
class_num
self
.
num_filters
=
[
64
,
128
,
256
,
512
]
...
...
@@ -305,14 +313,22 @@ class ResNet(TheseusLayer):
)
==
5
,
"lr_mult_list length should be 5 but got {}"
.
format
(
len
(
self
.
lr_mult_list
))
assert
isinstance
(
self
.
stride_list
,
(
list
,
tuple
)),
"stride_list should be in (list, tuple) but got {}"
.
format
(
type
(
self
.
stride_list
))
assert
len
(
self
.
stride_list
)
==
5
,
"stride_list length should be 5 but got {}"
.
format
(
len
(
self
.
stride_list
))
self
.
stem_cfg
=
{
#num_channels, num_filters, filter_size, stride
"vb"
:
[[
input_image_channel
,
64
,
7
,
2
]],
"vb"
:
[[
input_image_channel
,
64
,
7
,
self
.
stride_list
[
0
]
]],
"vd"
:
[[
input_image_channel
,
32
,
3
,
2
],
[
32
,
32
,
3
,
1
],
[
32
,
64
,
3
,
1
]]
[[
input_image_channel
,
32
,
3
,
self
.
stride_list
[
0
]
],
[
32
,
32
,
3
,
1
],
[
32
,
64
,
3
,
1
]]
}
self
.
stem
=
nn
.
Sequential
(
*
[
self
.
stem
=
nn
.
Sequential
(
*
[
ConvBNLayer
(
num_channels
=
in_c
,
num_filters
=
out_c
,
...
...
@@ -325,7 +341,7 @@ class ResNet(TheseusLayer):
])
self
.
max_pool
=
MaxPool2D
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
,
data_format
=
data_format
)
kernel_size
=
3
,
stride
=
stride_list
[
1
]
,
padding
=
1
,
data_format
=
data_format
)
block_list
=
[]
for
block_idx
in
range
(
len
(
self
.
block_depth
)):
shortcut
=
False
...
...
@@ -334,7 +350,7 @@ class ResNet(TheseusLayer):
num_channels
=
self
.
num_channels
[
block_idx
]
if
i
==
0
else
self
.
num_filters
[
block_idx
]
*
self
.
channels_mult
,
num_filters
=
self
.
num_filters
[
block_idx
],
stride
=
2
if
i
==
0
and
block_idx
!=
0
else
1
,
stride
=
self
.
stride_list
[
block_idx
+
1
]
if
i
==
0
and
block_idx
!=
0
else
1
,
shortcut
=
shortcut
,
if_first
=
block_idx
==
i
==
0
if
version
==
"vd"
else
True
,
lr_mult
=
self
.
lr_mult_list
[
block_idx
+
1
],
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录