未验证 提交 596f12f7 编写于 作者: D dyning 提交者: GitHub

Update README.md

上级 3afeb5c6
......@@ -36,7 +36,7 @@ src="docs/images/models/mobile_arm_top1.png" width="1000">
## 高阶使用
除了提供丰富的分类网络结构和预训练模型,PaddleCLS也提供了一系列有助于图像分类任务效果和效率提升的算法或工具。
- 模型蒸馏
### 模型蒸馏
模型蒸馏是指使用教师模型(teacher model)去指导学生模型(student model)学习特定任务,保证小模型在参数量不变的情况下,得到比较大的效果提升,甚至获得与大模型相似的精度指标。PaddleCLS提供了一种简单的半监督标签模型蒸馏方案(SSLD,Simple Semi-supervised Label Distillation),使用该方案大幅提升了ResNet50_vd、MobileNetV1和MobileNetV3在ImageNet数据集上分类效果。该蒸馏方案的框架图和蒸馏模型效果如下图所示,详细的蒸馏方法介绍以及使用正在持续更新中。
......@@ -50,7 +50,7 @@ src="docs/images/distillation/ppcls_distillation_v1.png" width="600">
src="docs/images/distillation/distillation_perform.png" width="500">
</div>
- 数据增广
### 数据增广
在图像分类任务中,图像数据的增广是一种常用的正则化方法,可以有效提升图像分类的效果,尤其对于数据量不足或者模型网络较深的场景。PaddleCLS提供了最新的8种数据增广算法的复现和在统一实验环境下效果评估,如下图所示。每种数据增广方法的详细介绍、对比的实验环境以及使用正在持续更新中。
......@@ -66,11 +66,11 @@ src="docs/images/image_aug/main_image_aug.png" width="600">
## 应用拓展
效果更优的图像分类网络结构和预训练模型往往有助于提升其他视觉任务的效果,PaddleCLS提供了一系列在常见视觉任务中的特色方案。
- 图像分类的迁移学习
### 图像分类的迁移学习
在实际应用中,由于训练数据的匮乏,往往将ImageNet1K数据集训练的分类模型作为预训练模型,进行图像分类的迁移学习。为了进一步助力实际问题的解决,PaddleCLS计划提供百度自研的基于10万种类别,4千多万的有标签数据训练的预训练模型,同时给出不同的超参搜索方法。该部分内容正在持续更新中。
- 通用目标检测
### 通用目标检测
近年来,学术界和工业界广泛关注图像中目标检测任务。PaddleCLS基于82.39%的ResNet50_vd的预训练模型,结合PaddleDetection中丰富的检测算子,提供了一种面向服务器端应用的目标检测方案,PSS-DET (Practical Server Side Detection),在COCO目标检测数据集上,当V100单卡预测速度为61FPS时,mAP是41.6%,预测速度为20FPS时,mAP是47.8%。详细的网络配置和训练代码,请参看<a href="https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/rcnn_server_side_det" rel="nofollow"> PaddleDetection中的相关内容</a>。更多的PaddleCLS在目标检测中的特色应用,正在持续更新中。
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册