提交 582157f2 编写于 作者: W weishengyu

modify format and remove loss

上级 586af751
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn.functional as F
__all__ = ['CELoss', 'MixCELoss', 'GoogLeNetLoss', 'JSDivLoss', 'MultiLabelLoss']
class Loss(object):
"""
Loss
"""
def __init__(self, class_dim=1000, epsilon=None):
assert class_dim > 1, "class_dim=%d is not larger than 1" % (class_dim)
self._class_dim = class_dim
if epsilon is not None and epsilon >= 0.0 and epsilon <= 1.0:
self._epsilon = epsilon
self._label_smoothing = True
else:
self._epsilon = None
self._label_smoothing = False
def _labelsmoothing(self, target):
if target.shape[-1] != self._class_dim:
one_hot_target = F.one_hot(target, self._class_dim)
else:
one_hot_target = target
soft_target = F.label_smooth(one_hot_target, epsilon=self._epsilon)
soft_target = paddle.reshape(soft_target, shape=[-1, self._class_dim])
return soft_target
def _binary_crossentropy(self, input, target):
if self._label_smoothing:
target = self._labelsmoothing(target)
cost = F.binary_cross_entropy_with_logits(logit=input, label=target)
else:
cost = F.binary_cross_entropy_with_logits(logit=input, label=target)
avg_cost = paddle.mean(cost)
return avg_cost
def _crossentropy(self, input, target):
if self._label_smoothing:
target = self._labelsmoothing(target)
input = -F.log_softmax(input, axis=-1)
cost = paddle.sum(target * input, axis=-1)
else:
cost = F.cross_entropy(input=input, label=target)
avg_cost = paddle.mean(cost)
return avg_cost
def _kldiv(self, input, target, name=None):
eps = 1.0e-10
cost = target * paddle.log(
(target + eps) / (input + eps)) * self._class_dim
return cost
def _jsdiv(self, input, target):
input = F.softmax(input)
target = F.softmax(target)
cost = self._kldiv(input, target) + self._kldiv(target, input)
cost = cost / 2
avg_cost = paddle.mean(cost)
return avg_cost
def __call__(self, input, target):
pass
class MultiLabelLoss(Loss):
"""
Multilabel loss based binary cross entropy
"""
def __init__(self, class_dim=1000, epsilon=None):
super(MultiLabelLoss, self).__init__(class_dim, epsilon)
def __call__(self, input, target):
cost = self._binary_crossentropy(input, target)
return cost
class CELoss(Loss):
"""
Cross entropy loss
"""
def __init__(self, class_dim=1000, epsilon=None):
super(CELoss, self).__init__(class_dim, epsilon)
def __call__(self, input, target):
cost = self._crossentropy(input, target)
return cost
class MixCELoss(Loss):
"""
Cross entropy loss with mix(mixup, cutmix, fixmix)
"""
def __init__(self, class_dim=1000, epsilon=None):
super(MixCELoss, self).__init__(class_dim, epsilon)
def __call__(self, input, target0, target1, lam):
cost0 = self._crossentropy(input, target0)
cost1 = self._crossentropy(input, target1)
cost = lam * cost0 + (1.0 - lam) * cost1
avg_cost = paddle.mean(cost)
return avg_cost
class GoogLeNetLoss(Loss):
"""
Cross entropy loss used after googlenet
"""
def __init__(self, class_dim=1000, epsilon=None):
super(GoogLeNetLoss, self).__init__(class_dim, epsilon)
def __call__(self, input0, input1, input2, target):
cost0 = self._crossentropy(input0, target)
cost1 = self._crossentropy(input1, target)
cost2 = self._crossentropy(input2, target)
cost = cost0 + 0.3 * cost1 + 0.3 * cost2
avg_cost = paddle.mean(cost)
return avg_cost
class JSDivLoss(Loss):
"""
JSDiv loss
"""
def __init__(self, class_dim=1000, epsilon=None):
super(JSDivLoss, self).__init__(class_dim, epsilon)
def __call__(self, input, target):
cost = self._jsdiv(input, target)
return cost
......@@ -14,22 +14,13 @@
from __future__ import print_function
import io
import tarfile
import numpy as np
from PIL import Image #all use default backend
import paddle
from paddle.io import Dataset
import pickle
import os
import cv2
import random
from .common_dataset import CommonDataset
class ImageNetDataset(CommonDataset):
class ImageNetDataset(CommonDataset):
def _load_anno(self, seed=None):
assert os.path.exists(self._cls_path)
assert os.path.exists(self._img_root)
......@@ -47,5 +38,3 @@ class ImageNetDataset(CommonDataset):
self.images.append(os.path.join(self._img_root, l[0]))
self.labels.append(int(l[1]))
assert os.path.exists(self.images[-1])
......@@ -14,26 +14,17 @@
from __future__ import print_function
import io
import tarfile
import numpy as np
from PIL import Image #all use default backend
import paddle
from paddle.io import Dataset
import pickle
import os
import cv2
import random
from ppcls.data import preprocess
from ppcls.data.preprocess import transform
from ppcls.utils import logger
from .common_dataset import CommonDataset
class MultiLabelDataset(CommonDataset):
class MultiLabelDataset(CommonDataset):
def _load_anno(self):
assert os.path.exists(self._cls_path)
assert os.path.exists(self._img_root)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册