未验证 提交 4fbc21b8 编写于 作者: W Wei Shengyu 提交者: GitHub

Merge pull request #1305 from PaddlePaddle/develop

Merge develop into release/2.3
...@@ -79,7 +79,7 @@ class UnifiedResize(object): ...@@ -79,7 +79,7 @@ class UnifiedResize(object):
if isinstance(interpolation, str): if isinstance(interpolation, str):
interpolation = _cv2_interp_from_str[interpolation.lower()] interpolation = _cv2_interp_from_str[interpolation.lower()]
# compatible with opencv < version 4.4.0 # compatible with opencv < version 4.4.0
elif not interpolation: elif interpolation is None:
interpolation = cv2.INTER_LINEAR interpolation = cv2.INTER_LINEAR
self.resize_func = partial(cv2.resize, interpolation=interpolation) self.resize_func = partial(cv2.resize, interpolation=interpolation)
elif backend.lower() == "pil": elif backend.lower() == "pil":
......
...@@ -214,7 +214,7 @@ python3 tools/export_model.py \ ...@@ -214,7 +214,7 @@ python3 tools/export_model.py \
其中,`Global.pretrained_model`用于指定模型文件路径,该路径仍无需包含模型文件后缀名(如[2.2 模型恢复训练](#模型恢复训练))。当执行后,会在当前目录下生成`./inference`目录,目录下包含`inference.pdiparams``inference.pdiparams.info``inference.pdmodel`文件。`Global.save_inference_dir`可以指定导出inference模型的路径。此处保存的inference模型在embedding特征层做了截断,即模型最终的输出为n维embedding特征。 其中,`Global.pretrained_model`用于指定模型文件路径,该路径仍无需包含模型文件后缀名(如[2.2 模型恢复训练](#模型恢复训练))。当执行后,会在当前目录下生成`./inference`目录,目录下包含`inference.pdiparams``inference.pdiparams.info``inference.pdmodel`文件。`Global.save_inference_dir`可以指定导出inference模型的路径。此处保存的inference模型在embedding特征层做了截断,即模型最终的输出为n维embedding特征。
上述命令将生成模型结构文件(`inference.pdmodel`)和模型权重文件(`inference.pdiparams`),然后可以使用预测引擎进行推理。使用inference模型推理的流程可以参考[基于Python预测引擎预测推理](@shengyu) 上述命令将生成模型结构文件(`inference.pdmodel`)和模型权重文件(`inference.pdiparams`),然后可以使用预测引擎进行推理。使用inference模型推理的流程可以参考[基于Python预测引擎预测推理](https://github.com/PaddlePaddle/PaddleClas/blob/develop/docs/zh_CN/inference.md)
## 基础知识 ## 基础知识
......
# 主体检测
主体检测技术是目前应用非常广泛的一种检测技术,它指的是检测出图片中一个或者多个主体的坐标位置,然后将图像中的对应区域裁剪下来,进行识别,从而完成整个识别过程。主体检测是识别任务的前序步骤,可以有效提升识别精度。
本部分主要从数据集、模型选择和模型训练 3 个方面对该部分内容进行介绍。
## 1. 数据集
在 PaddleClas 的识别任务中,训练主体检测模型时主要用到了以下几个数据集。
| 数据集 | 数据量 | 主体检测任务中使用的数据量 | 场景 | 数据集地址 |
| :------------: | :-------------: | :-------: | :-------: | :--------: |
| Objects365 | 170W | 6k | 通用场景 | [地址](https://www.objects365.org/overview.html) |
| COCO2017 | 12W | 5k | 通用场景 | [地址](https://cocodataset.org/) |
| iCartoonFace | 2k | 2k | 动漫人脸检测 | [地址](https://github.com/luxiangju-PersonAI/iCartoonFace) |
| LogoDet-3k | 3k | 2k | Logo检测 | [地址](https://github.com/Wangjing1551/LogoDet-3K-Dataset) |
| RPC | 3k | 3k | 商品检测 | [地址](https://rpc-dataset.github.io/) |
在实际训练的过程中,将所有数据集混合在一起。由于是主体检测,这里将所有标注出的检测框对应的类别都修改为 `前景` 的类别,最终融合的数据集中只包含 1 个类别,即前景。
## 2. 模型选择
目标检测方法种类繁多,比较常用的有两阶段检测器(如FasterRCNN系列等);单阶段检测器(如YOLO、SSD等);anchor-free检测器(如PicoDet、FCOS等)。PaddleDetection中针对服务端使用场景,自研了 PP-YOLO 系列模型;针对端侧(CPU和移动端等)使用场景,自研了 PicoDet 系列模型,在服务端和端侧均处于业界较为领先的水平。
基于上述研究,PaddleClas 中提供了 2 个通用主体检测模型,为轻量级与服务端主体检测模型,分别适用于端侧场景以及服务端场景。下面的表格中给出了在上述 5 个数据集上的平均 mAP 以及它们的模型大小、预测速度对比信息。
| 模型 | 模型结构 | 预训练模型下载地址 | inference模型下载地址 | mAP | inference模型大小(MB) | 单张图片预测耗时(不包含预处理)(ms) |
| :------------: | :-------------: | :------: | :-------: | :--------: | :-------: | :--------: |
| 轻量级主体检测模型 | PicoDet | [地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/pretrain/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_pretrained.pdparams) | [地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer.tar) | 40.1% | 30.1 | 29.8 |
| 服务端主体检测模型 | PP-YOLOv2 | [地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/pretrain/ppyolov2_r50vd_dcn_mainbody_v1.0_pretrained.pdparams) | [地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/ppyolov2_r50vd_dcn_mainbody_v1.0_infer.tar) | 42.5% | 210.5 | 466.6 |
* 注意
* 速度评测机器的CPU具体信息为:`Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz`,速度指标为开启 mkldnn ,线程数设置为 10 测试得到。
* 主体检测的预处理过程较为耗时,平均每张图在上述机器上的时间在 40~55 ms 左右,没有包含在上述的预测耗时统计中。
### 2.1 轻量级主体检测模型
PicoDet 由 [PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection) 提出,是一个适用于CPU或者移动端场景的目标检测算法。具体地,它融合了下面一系列优化算法。
- [ATSS](https://arxiv.org/abs/1912.02424)
- [Generalized Focal Loss](https://arxiv.org/abs/2006.04388)
- 余弦学习率策略
- Cycle-EMA
- 轻量级检测 head
更多关于 PicoDet 的优化细节与 benchmark 可以参考 [PicoDet 系列模型介绍](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/picodet/README.md)
在轻量级主体检测任务中,为了更好地兼顾检测速度与效果,我们使用 PPLCNet_x2_5 作为主体检测模型的骨干网络,同时将训练与预测的图像尺度修改为了 640x640,其余配置与 [picodet_m_shufflenetv2_416_coco.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/picodet/picodet_m_shufflenetv2_416_coco.yml)完全一致。将数据集更换为自定义的主体检测数据集,进行训练,最终得到检测模型。
### 2.2 服务端主体检测模型
PP-YOLO 由 [PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection) 提出,从骨干网络、数据增广、正则化策略、损失函数、后处理等多个角度对 yolov3 模型进行深度优化,最终在"速度-精度"方面达到了业界领先的水平。具体地,优化的策略如下。
- 更优的骨干网络: ResNet50vd-DCN
- 更大的训练batch size: 8 GPUs,每GPU batch_size=24,对应调整学习率和迭代轮数
- [Drop Block](https://arxiv.org/abs/1810.12890)
- [Exponential Moving Average](https://www.investopedia.com/terms/e/ema.asp)
- [IoU Loss](https://arxiv.org/pdf/1902.09630.pdf)
- [Grid Sensitive](https://arxiv.org/abs/2004.10934)
- [Matrix NMS](https://arxiv.org/pdf/2003.10152.pdf)
- [CoordConv](https://arxiv.org/abs/1807.03247)
- [Spatial Pyramid Pooling](https://arxiv.org/abs/1406.4729)
- 更优的预训练模型
更多关于 PP-YOLO 的详细介绍可以参考:[PP-YOLO 模型](https://github.com/PaddlePaddle/PaddleDetection/blob/release%2F2.1/configs/ppyolo/README_cn.md)
在服务端主体检测任务中,为了保证检测效果,我们使用 ResNet50vd-DCN 作为检测模型的骨干网络,使用配置文件 [ppyolov2_r50vd_dcn_365e_coco.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) ,更换为自定义的主体检测数据集,进行训练,最终得到检测模型。
## 3. 模型训练
本节主要介绍怎样基于PaddleDetection,基于自己的数据集,训练主体检测模型。
### 3.1 环境准备
下载PaddleDetection代码,安装requirements。
```shell
cd <path/to/clone/PaddleDetection>
git clone https://github.com/PaddlePaddle/PaddleDetection.git
cd PaddleDetection
# 安装其他依赖
pip install -r requirements.txt
```
更多安装教程,请参考: [安装文档](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/docs/tutorials/INSTALL_cn.md)
### 3.2 数据准备
对于自定义数据集,首先需要将自己的数据集修改为COCO格式,可以参考[自定义检测数据集教程](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/static/docs/tutorials/Custom_DataSet.md)制作COCO格式的数据集。
主体检测任务中,所有的检测框均属于前景,在这里需要将标注文件中,检测框的`category_id`修改为1,同时将整个标注文件中的`categories`映射表修改为下面的格式,即整个类别映射表中只包含`前景`类别。
```json
[{u'id': 1, u'name': u'foreground', u'supercategory': u'foreground'}]
```
### 3.3 配置文件改动和说明
我们使用 `configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml` 配置进行训练,配置文件摘要如下:
<div align='center'>
<img src='../../images/det/PaddleDetection_config.png' width='400'/>
</div>
从上图看到 `ppyolov2_r50vd_dcn_365e_coco.yml` 配置需要依赖其他的配置文件,这些配置文件的含义如下:
```
coco_detection.yml:主要说明了训练数据和验证数据的路径
runtime.yml:主要说明了公共的运行参数,比如是否使用GPU、每多少个epoch存储checkpoint等
optimizer_365e.yml:主要说明了学习率和优化器的配置
ppyolov2_r50vd_dcn.yml:主要说明模型和主干网络的情况
ppyolov2_reader.yml:主要说明数据读取器配置,如 batch size,并发加载子进程数等,同时包含读取后预处理操作,如resize、数据增强等等
```
在主体检测任务中,需要将 `datasets/coco_detection.yml` 中的 `num_classes` 参数修改为 1 (只有 1 个前景类别),同时将训练集和测试集的路径修改为自定义数据集的路径。
此外,也可以根据实际情况,修改上述文件,比如,如果显存溢出,可以将 batch size 和学习率等比缩小等。
### 3.4 启动训练
PaddleDetection 提供了单卡/多卡训练模式,满足用户多种训练需求。
* GPU 单卡训练
```bash
# windows和Mac下不需要执行该命令
export CUDA_VISIBLE_DEVICES=0
python tools/train.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml
```
* GPU多卡训练
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3
python -m paddle.distributed.launch --gpus 0,1,2,3 tools/train.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml --eval
```
--eval:表示边训练边验证。
* (**推荐**)模型微调
如果希望加载 PaddleClas 中已经训练好的主体检测模型,在自己的数据集上进行模型微调,可以使用下面的命令进行训练。
```bash
export CUDA_VISIBLE_DEVICES=0
# 指定pretrain_weights参数,加载通用的主体检测预训练模型
python tools/train.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml -o pretrain_weights=https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/pretrain/ppyolov2_r50vd_dcn_mainbody_v1.0_pretrained.pdparams
```
* 模型恢复训练
在日常训练过程中,有的用户由于一些原因导致训练中断,可以使用 `-r` 的命令恢复训练:
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3
python -m paddle.distributed.launch --gpus 0,1,2,3 tools/train.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml --eval -r output/ppyolov2_r50vd_dcn_365e_coco/10000
```
注意:如果遇到 "`Out of memory error`" 问题, 尝试在 `ppyolov2_reader.yml` 文件中调小`batch_size`,同时等比例调小学习率。
### 3.5 模型预测与调试
使用下面的命令完成 PaddleDetection 的预测过程。
```bash
export CUDA_VISIBLE_DEVICES=0
python tools/infer.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml --infer_img=your_image_path.jpg --output_dir=infer_output/ --draw_threshold=0.5 -o weights=output/ppyolov2_r50vd_dcn_365e_coco/model_final
```
`--draw_threshold` 是个可选参数. 根据 [NMS](https://ieeexplore.ieee.org/document/1699659) 的计算,不同阈值会产生不同的结果 `keep_top_k` 表示设置输出目标的最大数量,默认值为 100 ,用户可以根据自己的实际情况进行设定。
### 3.6 模型导出与预测部署。
执行导出模型脚本:
```bash
python tools/export_model.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml --output_dir=./inference -o weights=output/ppyolov2_r50vd_dcn_365e_coco/model_final.pdparams
```
预测模型会导出到 `inference/ppyolov2_r50vd_dcn_365e_coco` 目录下,分别为 `infer_cfg.yml` (预测不需要), `model.pdiparams`, `model.pdiparams.info`, `model.pdmodel`
注意: `PaddleDetection` 导出的inference模型的文件格式为 `model.xxx`,这里如果希望与PaddleClas的inference模型文件格式保持一致,需要将其 `model.xxx` 文件修改为 `inference.xxx` 文件,用于后续主体检测的预测部署。
更多模型导出教程,请参考: [EXPORT_MODEL](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/deploy/EXPORT_MODEL.md)
最终,目录 `inference/ppyolov2_r50vd_dcn_365e_coco` 中包含 `inference.pdiparams`, `inference.pdiparams.info` 以及 `inference.pdmodel` 文件,其中 `inference.pdiparams` 为保存的 inference 模型权重文件, `inference.pdmodel` 为保存的 inference 模型结构文件。
导出模型之后,在主体检测与识别任务中,就可以将检测模型的路径更改为该 inference 模型路径,完成预测。
以商品识别为例,其配置文件为 [inference_product.yaml](../../../deploy/configs/inference_product.yaml) ,修改其中的 `Global.det_inference_model_dir` 字段为导出的主体检测 inference 模型目录,参考[图像识别快速开始教程](../tutorials/quick_start_recognition.md) ,即可完成商品检测与识别过程。
### FAQ
#### Q:可以使用其他的主体检测模型结构吗?
* A:可以的,但是目前的检测预处理过程仅适配了 PicoDet 以及 YOLO 系列的预处理,因此在使用的时候,建议优先使用这两个系列的模型进行训练,如果希望使用 Faster RCNN 等其他系列的模型,需要按照 PaddleDetection 的数据预处理,修改下预处理逻辑,这块如果您有需求或者有问题的话,欢迎提 issue 或者在微信群里反馈。
#### Q:可以修改主体检测的预测尺度吗?
* A:可以的,但是需要注意 2 个地方
* PaddleClas 中提供的主体检测模型是基于 `640x640` 的分辨率去训练的,因此预测的时候也是默认使用 `640x640` 的分辨率进行预测,使用其他分辨率预测的话,精度会有所降低。
* 在模型导出的时候,建议也修改下模型导出的分辨率,保持模型导出、模型预测的分辨率一致。
...@@ -58,6 +58,7 @@ from ppcls.arch.backbone.model_zoo.dla import DLA34, DLA46_c, DLA46x_c, DLA60, D ...@@ -58,6 +58,7 @@ from ppcls.arch.backbone.model_zoo.dla import DLA34, DLA46_c, DLA46x_c, DLA60, D
from ppcls.arch.backbone.model_zoo.rednet import RedNet26, RedNet38, RedNet50, RedNet101, RedNet152 from ppcls.arch.backbone.model_zoo.rednet import RedNet26, RedNet38, RedNet50, RedNet101, RedNet152
from ppcls.arch.backbone.model_zoo.tnt import TNT_small from ppcls.arch.backbone.model_zoo.tnt import TNT_small
from ppcls.arch.backbone.model_zoo.hardnet import HarDNet68, HarDNet85, HarDNet39_ds, HarDNet68_ds from ppcls.arch.backbone.model_zoo.hardnet import HarDNet68, HarDNet85, HarDNet39_ds, HarDNet68_ds
from ppcls.arch.backbone.model_zoo.cspnet import CSPDarkNet53
from ppcls.arch.backbone.variant_models.resnet_variant import ResNet50_last_stage_stride1 from ppcls.arch.backbone.variant_models.resnet_variant import ResNet50_last_stage_stride1
from ppcls.arch.backbone.variant_models.vgg_variant import VGG19Sigmoid from ppcls.arch.backbone.variant_models.vgg_variant import VGG19Sigmoid
......
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {
"CSPDarkNet53":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/CSPDarkNet53_pretrained.pdparams"
}
MODEL_CFGS = {
"CSPDarkNet53": dict(
stem=dict(
out_chs=32, kernel_size=3, stride=1, pool=''),
stage=dict(
out_chs=(64, 128, 256, 512, 1024),
depth=(1, 2, 8, 8, 4),
stride=(2, ) * 5,
exp_ratio=(2., ) + (1., ) * 4,
bottle_ratio=(0.5, ) + (1.0, ) * 4,
block_ratio=(1., ) + (0.5, ) * 4,
down_growth=True, ))
}
__all__ = ['CSPDarkNet53'
] # model_registry will add each entrypoint fn to this
class ConvBnAct(nn.Layer):
def __init__(self,
input_channels,
output_channels,
kernel_size=1,
stride=1,
padding=None,
dilation=1,
groups=1,
act_layer=nn.LeakyReLU,
norm_layer=nn.BatchNorm2D):
super().__init__()
if padding is None:
padding = (kernel_size - 1) // 2
self.conv = nn.Conv2D(
in_channels=input_channels,
out_channels=output_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
weight_attr=ParamAttr(),
bias_attr=False)
self.bn = norm_layer(num_features=output_channels)
self.act = act_layer()
def forward(self, inputs):
x = self.conv(inputs)
x = self.bn(x)
if self.act is not None:
x = self.act(x)
return x
def create_stem(in_chans=3,
out_chs=32,
kernel_size=3,
stride=2,
pool='',
act_layer=None,
norm_layer=None):
stem = nn.Sequential()
if not isinstance(out_chs, (tuple, list)):
out_chs = [out_chs]
assert len(out_chs)
in_c = in_chans
for i, out_c in enumerate(out_chs):
conv_name = f'conv{i + 1}'
stem.add_sublayer(
conv_name,
ConvBnAct(
in_c,
out_c,
kernel_size,
stride=stride if i == 0 else 1,
act_layer=act_layer,
norm_layer=norm_layer))
in_c = out_c
last_conv = conv_name
if pool:
stem.add_sublayer(
'pool', nn.MaxPool2D(
kernel_size=3, stride=2, padding=1))
return stem, dict(
num_chs=in_c, reduction=stride, module='.'.join(['stem', last_conv]))
class DarkBlock(nn.Layer):
def __init__(self,
in_chs,
out_chs,
dilation=1,
bottle_ratio=0.5,
groups=1,
act_layer=nn.ReLU,
norm_layer=nn.BatchNorm2D,
attn_layer=None,
drop_block=None):
super(DarkBlock, self).__init__()
mid_chs = int(round(out_chs * bottle_ratio))
ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer)
self.conv1 = ConvBnAct(in_chs, mid_chs, kernel_size=1, **ckwargs)
self.conv2 = ConvBnAct(
mid_chs,
out_chs,
kernel_size=3,
dilation=dilation,
groups=groups,
**ckwargs)
def forward(self, x):
shortcut = x
x = self.conv1(x)
x = self.conv2(x)
x = x + shortcut
return x
class CrossStage(nn.Layer):
def __init__(self,
in_chs,
out_chs,
stride,
dilation,
depth,
block_ratio=1.,
bottle_ratio=1.,
exp_ratio=1.,
groups=1,
first_dilation=None,
down_growth=False,
cross_linear=False,
block_dpr=None,
block_fn=DarkBlock,
**block_kwargs):
super(CrossStage, self).__init__()
first_dilation = first_dilation or dilation
down_chs = out_chs if down_growth else in_chs
exp_chs = int(round(out_chs * exp_ratio))
block_out_chs = int(round(out_chs * block_ratio))
conv_kwargs = dict(
act_layer=block_kwargs.get('act_layer'),
norm_layer=block_kwargs.get('norm_layer'))
if stride != 1 or first_dilation != dilation:
self.conv_down = ConvBnAct(
in_chs,
down_chs,
kernel_size=3,
stride=stride,
dilation=first_dilation,
groups=groups,
**conv_kwargs)
prev_chs = down_chs
else:
self.conv_down = None
prev_chs = in_chs
self.conv_exp = ConvBnAct(
prev_chs, exp_chs, kernel_size=1, **conv_kwargs)
prev_chs = exp_chs // 2 # output of conv_exp is always split in two
self.blocks = nn.Sequential()
for i in range(depth):
self.blocks.add_sublayer(
str(i),
block_fn(prev_chs, block_out_chs, dilation, bottle_ratio,
groups, **block_kwargs))
prev_chs = block_out_chs
# transition convs
self.conv_transition_b = ConvBnAct(
prev_chs, exp_chs // 2, kernel_size=1, **conv_kwargs)
self.conv_transition = ConvBnAct(
exp_chs, out_chs, kernel_size=1, **conv_kwargs)
def forward(self, x):
if self.conv_down is not None:
x = self.conv_down(x)
x = self.conv_exp(x)
split = x.shape[1] // 2
xs, xb = x[:, :split], x[:, split:]
xb = self.blocks(xb)
xb = self.conv_transition_b(xb)
out = self.conv_transition(paddle.concat([xs, xb], axis=1))
return out
class DarkStage(nn.Layer):
def __init__(self,
in_chs,
out_chs,
stride,
dilation,
depth,
block_ratio=1.,
bottle_ratio=1.,
groups=1,
first_dilation=None,
block_fn=DarkBlock,
block_dpr=None,
**block_kwargs):
super().__init__()
first_dilation = first_dilation or dilation
self.conv_down = ConvBnAct(
in_chs,
out_chs,
kernel_size=3,
stride=stride,
dilation=first_dilation,
groups=groups,
act_layer=block_kwargs.get('act_layer'),
norm_layer=block_kwargs.get('norm_layer'))
prev_chs = out_chs
block_out_chs = int(round(out_chs * block_ratio))
self.blocks = nn.Sequential()
for i in range(depth):
self.blocks.add_sublayer(
str(i),
block_fn(prev_chs, block_out_chs, dilation, bottle_ratio,
groups, **block_kwargs))
prev_chs = block_out_chs
def forward(self, x):
x = self.conv_down(x)
x = self.blocks(x)
return x
def _cfg_to_stage_args(cfg, curr_stride=2, output_stride=32):
# get per stage args for stage and containing blocks, calculate strides to meet target output_stride
num_stages = len(cfg['depth'])
if 'groups' not in cfg:
cfg['groups'] = (1, ) * num_stages
if 'down_growth' in cfg and not isinstance(cfg['down_growth'],
(list, tuple)):
cfg['down_growth'] = (cfg['down_growth'], ) * num_stages
stage_strides = []
stage_dilations = []
stage_first_dilations = []
dilation = 1
for cfg_stride in cfg['stride']:
stage_first_dilations.append(dilation)
if curr_stride >= output_stride:
dilation *= cfg_stride
stride = 1
else:
stride = cfg_stride
curr_stride *= stride
stage_strides.append(stride)
stage_dilations.append(dilation)
cfg['stride'] = stage_strides
cfg['dilation'] = stage_dilations
cfg['first_dilation'] = stage_first_dilations
stage_args = [
dict(zip(cfg.keys(), values)) for values in zip(*cfg.values())
]
return stage_args
class CSPNet(nn.Layer):
def __init__(self,
cfg,
in_chans=3,
class_num=1000,
output_stride=32,
global_pool='avg',
drop_rate=0.,
act_layer=nn.LeakyReLU,
norm_layer=nn.BatchNorm2D,
zero_init_last_bn=True,
stage_fn=CrossStage,
block_fn=DarkBlock):
super().__init__()
self.class_num = class_num
self.drop_rate = drop_rate
assert output_stride in (8, 16, 32)
layer_args = dict(act_layer=act_layer, norm_layer=norm_layer)
# Construct the stem
self.stem, stem_feat_info = create_stem(in_chans, **cfg['stem'],
**layer_args)
self.feature_info = [stem_feat_info]
prev_chs = stem_feat_info['num_chs']
curr_stride = stem_feat_info[
'reduction'] # reduction does not include pool
if cfg['stem']['pool']:
curr_stride *= 2
# Construct the stages
per_stage_args = _cfg_to_stage_args(
cfg['stage'], curr_stride=curr_stride, output_stride=output_stride)
self.stages = nn.LayerList()
for i, sa in enumerate(per_stage_args):
self.stages.add_sublayer(
str(i),
stage_fn(
prev_chs, **sa, **layer_args, block_fn=block_fn))
prev_chs = sa['out_chs']
curr_stride *= sa['stride']
self.feature_info += [
dict(
num_chs=prev_chs,
reduction=curr_stride,
module=f'stages.{i}')
]
# Construct the head
self.num_features = prev_chs
self.pool = nn.AdaptiveAvgPool2D(1)
self.flatten = nn.Flatten(1)
self.fc = nn.Linear(
prev_chs,
class_num,
weight_attr=ParamAttr(),
bias_attr=ParamAttr())
def forward(self, x):
x = self.stem(x)
for stage in self.stages:
x = stage(x)
x = self.pool(x)
x = self.flatten(x)
x = self.fc(x)
return x
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def CSPDarkNet53(pretrained=False, use_ssld=False, **kwargs):
model = CSPNet(MODEL_CFGS["CSPDarkNet53"], block_fn=DarkBlock, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["CSPDarkNet53"], use_ssld=use_ssld)
return model
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 120
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: ./inference
# training model under @to_static
to_static: False
# model architecture
Arch:
name: CSPDarkNet53
class_num: 1000
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: Piecewise
decay_epochs: [30, 60, 90]
values: [0.1, 0.01, 0.001, 0.0001]
regularizer:
name: 'L2'
coeff: 0.0001
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- RandCropImage:
size: 256
- RandFlipImage:
flip_code: 1
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: False
shuffle: True
loader:
num_workers: 4
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 288
- CropImage:
size: 256
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Infer:
infer_imgs: docs/images/whl/demo.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 288
- CropImage:
size: 256
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
topk: 5
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
Metric:
Train:
- TopkAcc:
topk: [1, 5]
Eval:
- TopkAcc:
topk: [1, 5]
...@@ -60,7 +60,7 @@ class UnifiedResize(object): ...@@ -60,7 +60,7 @@ class UnifiedResize(object):
if isinstance(interpolation, str): if isinstance(interpolation, str):
interpolation = _cv2_interp_from_str[interpolation.lower()] interpolation = _cv2_interp_from_str[interpolation.lower()]
# compatible with opencv < version 4.4.0 # compatible with opencv < version 4.4.0
elif not interpolation: elif interpolation is None:
interpolation = cv2.INTER_LINEAR interpolation = cv2.INTER_LINEAR
self.resize_func = partial(cv2.resize, interpolation=interpolation) self.resize_func = partial(cv2.resize, interpolation=interpolation)
elif backend.lower() == "pil": elif backend.lower() == "pil":
......
...@@ -41,7 +41,8 @@ def build_lr_scheduler(lr_config, epochs, step_each_epoch): ...@@ -41,7 +41,8 @@ def build_lr_scheduler(lr_config, epochs, step_each_epoch):
return lr return lr
def build_optimizer(config, epochs, step_each_epoch, model_list): # model_list is None in static graph
def build_optimizer(config, epochs, step_each_epoch, model_list=None):
config = copy.deepcopy(config) config = copy.deepcopy(config)
# step1 build lr # step1 build lr
lr = build_lr_scheduler(config.pop('lr'), epochs, step_each_epoch) lr = build_lr_scheduler(config.pop('lr'), epochs, step_each_epoch)
......
...@@ -18,6 +18,8 @@ from __future__ import print_function ...@@ -18,6 +18,8 @@ from __future__ import print_function
from paddle import optimizer as optim from paddle import optimizer as optim
from ppcls.utils import logger
class Momentum(object): class Momentum(object):
""" """
...@@ -43,7 +45,9 @@ class Momentum(object): ...@@ -43,7 +45,9 @@ class Momentum(object):
self.multi_precision = multi_precision self.multi_precision = multi_precision
def __call__(self, model_list): def __call__(self, model_list):
parameters = sum([m.parameters() for m in model_list], []) # model_list is None in static graph
parameters = sum([m.parameters() for m in model_list],
[]) if model_list else None
opt = optim.Momentum( opt = optim.Momentum(
learning_rate=self.learning_rate, learning_rate=self.learning_rate,
momentum=self.momentum, momentum=self.momentum,
...@@ -79,7 +83,9 @@ class Adam(object): ...@@ -79,7 +83,9 @@ class Adam(object):
self.multi_precision = multi_precision self.multi_precision = multi_precision
def __call__(self, model_list): def __call__(self, model_list):
parameters = sum([m.parameters() for m in model_list], []) # model_list is None in static graph
parameters = sum([m.parameters() for m in model_list],
[]) if model_list else None
opt = optim.Adam( opt = optim.Adam(
learning_rate=self.learning_rate, learning_rate=self.learning_rate,
beta1=self.beta1, beta1=self.beta1,
...@@ -123,7 +129,9 @@ class RMSProp(object): ...@@ -123,7 +129,9 @@ class RMSProp(object):
self.grad_clip = grad_clip self.grad_clip = grad_clip
def __call__(self, model_list): def __call__(self, model_list):
parameters = sum([m.parameters() for m in model_list], []) # model_list is None in static graph
parameters = sum([m.parameters() for m in model_list],
[]) if model_list else None
opt = optim.RMSProp( opt = optim.RMSProp(
learning_rate=self.learning_rate, learning_rate=self.learning_rate,
momentum=self.momentum, momentum=self.momentum,
...@@ -160,18 +168,28 @@ class AdamW(object): ...@@ -160,18 +168,28 @@ class AdamW(object):
self.one_dim_param_no_weight_decay = one_dim_param_no_weight_decay self.one_dim_param_no_weight_decay = one_dim_param_no_weight_decay
def __call__(self, model_list): def __call__(self, model_list):
parameters = sum([m.parameters() for m in model_list], []) # model_list is None in static graph
parameters = sum([m.parameters() for m in model_list],
[]) if model_list else None
# TODO(gaotingquan): model_list is None when in static graph, "no_weight_decay" not work.
if model_list is None:
if self.one_dim_param_no_weight_decay or len(
self.no_weight_decay_name_list) != 0:
msg = "\"AdamW\" does not support setting \"no_weight_decay\" in static graph. Please use dynamic graph."
logger.error(Exception(msg))
raise Exception(msg)
self.no_weight_decay_param_name_list = [ self.no_weight_decay_param_name_list = [
p.name for model in model_list for n, p in model.named_parameters() p.name for model in model_list for n, p in model.named_parameters()
if any(nd in n for nd in self.no_weight_decay_name_list) if any(nd in n for nd in self.no_weight_decay_name_list)
] ] if model_list else []
if self.one_dim_param_no_weight_decay: if self.one_dim_param_no_weight_decay:
self.no_weight_decay_param_name_list += [ self.no_weight_decay_param_name_list += [
p.name for model in model_list p.name for model in model_list
for n, p in model.named_parameters() if len(p.shape) == 1 for n, p in model.named_parameters() if len(p.shape) == 1
] ] if model_list else []
opt = optim.AdamW( opt = optim.AdamW(
learning_rate=self.learning_rate, learning_rate=self.learning_rate,
......
...@@ -41,7 +41,7 @@ inference:python/predict_cls.py -c configs/inference_cls.yaml ...@@ -41,7 +41,7 @@ inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False -o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False -o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6 -o Global.cpu_num_threads:1|6
-o Global.batch_size:1 -o Global.batch_size:1|16
-o Global.use_tensorrt:True|False -o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False -o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference -o Global.inference_model_dir:../inference
......
===========================train_params===========================
model_name:GhostNet_x0_5
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/GhostNet/GhostNet_x0_5.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/GhostNet/GhostNet_x0_5.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/GhostNet/GhostNet_x0_5.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x0_5_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================train_params===========================
model_name:GhostNet_x1_0
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/GhostNet/GhostNet_x1_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/GhostNet/GhostNet_x1_0.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/GhostNet/GhostNet_x1_0.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_0_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================train_params===========================
model_name:GhostNet_x1_3
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/GhostNet/GhostNet_x1_3.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/GhostNet/GhostNet_x1_3.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/GhostNet/GhostNet_x1_3.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
...@@ -41,7 +41,7 @@ inference:python/predict_cls.py -c configs/inference_cls.yaml ...@@ -41,7 +41,7 @@ inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False -o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False -o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6 -o Global.cpu_num_threads:1|6
-o Global.batch_size:1 -o Global.batch_size:1|16
-o Global.use_tensorrt:True|False -o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False -o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference -o Global.inference_model_dir:../inference
......
...@@ -41,7 +41,7 @@ inference:python/predict_cls.py -c configs/inference_cls.yaml ...@@ -41,7 +41,7 @@ inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|Fasle -o Global.use_gpu:True|Fasle
-o Global.enable_mkldnn:True|False -o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6 -o Global.cpu_num_threads:1|6
-o Global.batch_size:1 -o Global.batch_size:1|16
-o Global.use_tensorrt:True|False -o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False -o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference -o Global.inference_model_dir:../inference
......
...@@ -41,7 +41,7 @@ inference:python/predict_cls.py -c configs/inference_cls.yaml ...@@ -41,7 +41,7 @@ inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False -o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False -o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6 -o Global.cpu_num_threads:1|6
-o Global.batch_size:1 -o Global.batch_size:1|16
-o Global.use_tensorrt:True|False -o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False -o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference -o Global.inference_model_dir:../inference
......
===========================train_params===========================
model_name:MobileNetV1_x0_25
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileNetV1/MobileNetV1_x0_25.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV1/MobileNetV1_x0_25.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileNetV1/MobileNetV1_x0_25.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_25_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================train_params===========================
model_name:MobileNetV1_x0_5
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileNetV1/MobileNetV1_x0_5.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV1/MobileNetV1_x0_5.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileNetV1/MobileNetV1_x0_5.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_5_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================train_params===========================
model_name:MobileNetV1_x0_75
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileNetV1/MobileNetV1_x0_75.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV1/MobileNetV1_x0_75.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileNetV1/MobileNetV1_x0_75.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_75_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
...@@ -41,7 +41,7 @@ inference:python/predict_cls.py -c configs/inference_cls.yaml ...@@ -41,7 +41,7 @@ inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False -o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False -o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6 -o Global.cpu_num_threads:1|6
-o Global.batch_size:1 -o Global.batch_size:1|16
-o Global.use_tensorrt:True|False -o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False -o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference -o Global.inference_model_dir:../inference
......
===========================train_params===========================
model_name:MobileNetV2_x0_25
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileNetV2/MobileNetV2_x0_25.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV2/MobileNetV2_x0_25.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileNetV2/MobileNetV2_x0_25.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_25_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================train_params===========================
model_name:MobileNetV2_x0_5
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileNetV2/MobileNetV2_x0_5.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV2/MobileNetV2_x0_5.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileNetV2/MobileNetV2_x0_5.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_5_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================train_params===========================
model_name:MobileNetV2_x0_75
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileNetV2/MobileNetV2_x0_75.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV2/MobileNetV2_x0_75.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileNetV2/MobileNetV2_x0_75.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_75_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================train_params===========================
model_name:MobileNetV2_x1_5
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileNetV2/MobileNetV2_x1_5.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV2/MobileNetV2_x1_5.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileNetV2/MobileNetV2_x1_5.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x1_5_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================train_params===========================
model_name:MobileNetV2_x2_0
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileNetV2/MobileNetV2_x2_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV2/MobileNetV2_x2_0.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileNetV2/MobileNetV2_x2_0.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x2_0_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================train_params===========================
model_name:MobileNetV3_large_x0_35
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x0_35.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x0_35.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x0_35.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_35_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================train_params===========================
model_name:MobileNetV3_large_x0_5
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x0_5.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x0_5.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x0_5.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_5_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================train_params===========================
model_name:MobileNetV3_large_x0_75
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x0_75.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x0_75.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x0_75.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_75_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
...@@ -31,17 +31,17 @@ norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNe ...@@ -31,17 +31,17 @@ norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNe
quant_export:tools/export_model.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_quantization.yaml quant_export:tools/export_model.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_quantization.yaml
fpgm_export:tools/export_model.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_prune.yaml fpgm_export:tools/export_model.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_prune.yaml
distill_export:null distill_export:null
export1:null kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml -o Global.save_inference_dir=./inference
export2:null export2:null
inference_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/whole_chain/MobileNetV3_large_x1_0_inference.tar inference_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/whole_chain/MobileNetV3_large_x1_0_inference.tar
infer_model:../inference/ infer_model:../inference/
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml -o Global.save_inference_dir=./inference infer_export:null
infer_quant:Fasle infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False -o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False -o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6 -o Global.cpu_num_threads:1|6
-o Global.batch_size:1 -o Global.batch_size:1|16
-o Global.use_tensorrt:True|False -o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False -o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference -o Global.inference_model_dir:../inference
......
===========================train_params===========================
model_name:MobileNetV3_large_x1_25
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_25.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_25.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_25.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_25_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================train_params===========================
model_name:MobileNetV3_small_x0_35
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_small_x0_35.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_small_x0_35.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_small_x0_35.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================train_params===========================
model_name:MobileNetV3_small_x0_5
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_small_x0_5.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_small_x0_5.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_small_x0_5.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_5_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================train_params===========================
model_name:MobileNetV3_small_x0_75
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_small_x0_75.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_small_x0_75.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_small_x0_75.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_75_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================train_params===========================
model_name:MobileNetV3_small_x1_0
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_small_x1_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_small_x1_0.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_small_x1_0.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================train_params===========================
model_name:MobileNetV3_small_x1_25
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_small_x1_25.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_small_x1_25.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_small_x1_25.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_25_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================train_params===========================
model_name:PPLCNet_x0_25
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x0_25.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x0_25.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x0_25.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_25_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================train_params===========================
model_name:PPLCNet_x0_35
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x0_35.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x0_35.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x0_35.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_35_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================train_params===========================
model_name:PPLCNet_x0_5
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x0_5.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x0_5.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x0_5.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================train_params===========================
model_name:PPLCNet_x1_0
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x1_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x1_0.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x1_0.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
...@@ -41,7 +41,7 @@ inference:python/predict_cls.py -c configs/inference_cls.yaml ...@@ -41,7 +41,7 @@ inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False -o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False -o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6 -o Global.cpu_num_threads:1|6
-o Global.batch_size:1 -o Global.batch_size:1|16
-o Global.use_tensorrt:True|False -o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False -o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference -o Global.inference_model_dir:../inference
......
...@@ -31,17 +31,17 @@ norm_export:tools/export_model.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.y ...@@ -31,17 +31,17 @@ norm_export:tools/export_model.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.y
quant_export:tools/export_model.py -c ppcls/configs/slim/ResNet50_vd_quantization.yaml quant_export:tools/export_model.py -c ppcls/configs/slim/ResNet50_vd_quantization.yaml
fpgm_export:tools/export_model.py -c ppcls/configs/slim/ResNet50_vd_prune.yaml fpgm_export:tools/export_model.py -c ppcls/configs/slim/ResNet50_vd_prune.yaml
distill_export:null distill_export:null
export1:null kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml -o Global.save_inference_dir=./inference
export2:null export2:null
infer_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/whole_chain/ResNet50_vd_inference.tar infer_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/whole_chain/ResNet50_vd_inference.tar
infer_model:../inference/ infer_model:../inference/
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml -o Global.save_inference_dir=./inference infer_export:null
infer_quant:Fasle infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False -o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False -o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6 -o Global.cpu_num_threads:1|6
-o Global.batch_size:1 -o Global.batch_size:1|16
-o Global.use_tensorrt:True|False -o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False -o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference -o Global.inference_model_dir:../inference
......
===========================train_params===========================
model_name:ShuffleNetV2_x0_25
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/ShuffleNet/ShuffleNetV2_x0_25.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/ShuffleNet/ShuffleNetV2_x0_25.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/ShuffleNet/ShuffleNetV2_x0_25.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_25_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================train_params===========================
model_name:ShuffleNetV2_x0_33
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/ShuffleNet/ShuffleNetV2_x0_33.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/ShuffleNet/ShuffleNetV2_x0_33.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/ShuffleNet/ShuffleNetV2_x0_33.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_33_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================train_params===========================
model_name:ShuffleNetV2_x0_5
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/ShuffleNet/ShuffleNetV2_x0_5.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/ShuffleNet/ShuffleNetV2_x0_5.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/ShuffleNet/ShuffleNetV2_x0_5.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_5_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
...@@ -41,7 +41,7 @@ inference:python/predict_cls.py -c configs/inference_cls.yaml ...@@ -41,7 +41,7 @@ inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False -o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False -o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6 -o Global.cpu_num_threads:1|6
-o Global.batch_size:1 -o Global.batch_size:1|16
-o Global.use_tensorrt:True|False -o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False -o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference -o Global.inference_model_dir:../inference
......
...@@ -41,7 +41,7 @@ inference:python/predict_cls.py -c configs/inference_cls.yaml ...@@ -41,7 +41,7 @@ inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False -o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False -o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6 -o Global.cpu_num_threads:1|6
-o Global.batch_size:1 -o Global.batch_size:1|16
-o Global.use_tensorrt:True|False -o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False -o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference -o Global.inference_model_dir:../inference
......
...@@ -7,6 +7,15 @@ dataline=$(cat ${FILENAME}) ...@@ -7,6 +7,15 @@ dataline=$(cat ${FILENAME})
# parser params # parser params
IFS=$'\n' IFS=$'\n'
lines=(${dataline}) lines=(${dataline})
function func_parser_key(){
strs=$1
IFS=":"
array=(${strs})
tmp=${array[0]}
echo ${tmp}
}
function func_parser_value(){ function func_parser_value(){
strs=$1 strs=$1
IFS=":" IFS=":"
...@@ -20,7 +29,8 @@ function func_parser_value(){ ...@@ -20,7 +29,8 @@ function func_parser_value(){
fi fi
} }
model_name=$(func_parser_value "${lines[1]}") model_name=$(func_parser_value "${lines[1]}")
inference_model_url=$(func_parser_value "${lines[35]}") model_url_value=$(func_parser_value "${lines[35]}")
model_url_key=$(func_parser_key "${lines[35]}")
if [ ${MODE} = "lite_train_infer" ] || [ ${MODE} = "whole_infer" ];then if [ ${MODE} = "lite_train_infer" ] || [ ${MODE} = "whole_infer" ];then
# pretrain lite train data # pretrain lite train data
...@@ -44,9 +54,12 @@ elif [ ${MODE} = "infer" ] || [ ${MODE} = "cpp_infer" ];then ...@@ -44,9 +54,12 @@ elif [ ${MODE} = "infer" ] || [ ${MODE} = "cpp_infer" ];then
mv val.txt val_list.txt mv val.txt val_list.txt
ln -s val_list.txt train_list.txt ln -s val_list.txt train_list.txt
cd ../../ cd ../../
# download inference model # download inference or pretrained model
eval "wget -nc $inference_model_url" eval "wget -nc $model_url_value"
tar xf "${model_name}_inference.tar" if [[ $model_url_key == *inference* ]]; then
rm -rf inference
tar xf "${model_name}_inference.tar"
fi
elif [ ${MODE} = "whole_train_infer" ];then elif [ ${MODE} = "whole_train_infer" ];then
cd dataset cd dataset
......
...@@ -113,14 +113,14 @@ norm_export=$(func_parser_value "${lines[29]}") ...@@ -113,14 +113,14 @@ norm_export=$(func_parser_value "${lines[29]}")
pact_export=$(func_parser_value "${lines[30]}") pact_export=$(func_parser_value "${lines[30]}")
fpgm_export=$(func_parser_value "${lines[31]}") fpgm_export=$(func_parser_value "${lines[31]}")
distill_export=$(func_parser_value "${lines[32]}") distill_export=$(func_parser_value "${lines[32]}")
export_key1=$(func_parser_key "${lines[33]}") kl_quant_cmd_key=$(func_parser_key "${lines[33]}")
export_value1=$(func_parser_value "${lines[33]}") kl_quant_cmd_value=$(func_parser_value "${lines[33]}")
export_key2=$(func_parser_key "${lines[34]}") export_key2=$(func_parser_key "${lines[34]}")
export_value2=$(func_parser_value "${lines[34]}") export_value2=$(func_parser_value "${lines[34]}")
# parser inference model # parser inference model
infer_model_dir_list=$(func_parser_value "${lines[36]}") infer_model_dir_list=$(func_parser_value "${lines[36]}")
infer_export_list=$(func_parser_value "${lines[37]}") infer_export_flag=$(func_parser_value "${lines[37]}")
infer_is_quant=$(func_parser_value "${lines[38]}") infer_is_quant=$(func_parser_value "${lines[38]}")
# parser inference # parser inference
inference_py=$(func_parser_value "${lines[39]}") inference_py=$(func_parser_value "${lines[39]}")
...@@ -295,8 +295,13 @@ if [ ${MODE} = "infer" ]; then ...@@ -295,8 +295,13 @@ if [ ${MODE} = "infer" ]; then
eval $env eval $env
export Count=0 export Count=0
IFS="|" IFS="|"
infer_run_exports=(${infer_export_list}) infer_export_flag=(${infer_export_flag})
infer_quant_flag=(${infer_is_quant}) infer_quant_flag=(${infer_is_quant})
if [ ${infer_export_flag} != "null" ] && [ ${infer_export_flag} != "False" ]; then
rm -rf ${infer_model_dir_list/..\//}
export_cmd="${python} ${norm_export} -o Global.pretrained_model=${model_name}_pretrained -o Global.save_inference_dir=${infer_model_dir_list/..\//}"
eval $export_cmd
fi
cd deploy cd deploy
for infer_model in ${infer_model_dir_list[*]}; do for infer_model in ${infer_model_dir_list[*]}; do
#run inference #run inference
...@@ -308,9 +313,9 @@ if [ ${MODE} = "infer" ]; then ...@@ -308,9 +313,9 @@ if [ ${MODE} = "infer" ]; then
cd .. cd ..
# for kl_quant # for kl_quant
echo "kl_quant" if [ ${kl_quant_cmd_value} != "null" ] && [ ${kl_quant_cmd_value} != "False" ]; then
if [ ${infer_run_exports} ]; then echo "kl_quant"
command="${python} ${infer_run_exports}" command="${python} ${kl_quant_cmd_value}"
eval $command eval $command
last_status=${PIPESTATUS[0]} last_status=${PIPESTATUS[0]}
status_check $last_status "${command}" "${status_log}" status_check $last_status "${command}" "${status_log}"
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册