Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
4ccfca29
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4ccfca29
编写于
5月 06, 2020
作者:
S
shippingwang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add autoargument
上级
32ce6837
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
150 addition
and
0 deletion
+150
-0
configs/EfficientNet/EfficientNetB0.yaml
configs/EfficientNet/EfficientNetB0.yaml
+84
-0
ppcls/data/imaug/operators.py
ppcls/data/imaug/operators.py
+13
-0
ppcls/optimizer/learning_rate.py
ppcls/optimizer/learning_rate.py
+53
-0
未找到文件。
configs/EfficientNet/EfficientNetB0.yaml
0 → 100644
浏览文件 @
4ccfca29
mode
:
'
train'
ARCHITECTURE
:
name
:
"
EfficientNetB0"
drop_connect_rate
:
0.1
padding_type
:
"
SAME"
pretrained_model
:
"
"
model_save_dir
:
"
./output/"
classes_num
:
1000
total_images
:
1281167
save_interval
:
1
validate
:
True
valid_interval
:
1
epochs
:
360
topk
:
5
image_shape
:
[
3
,
224
,
224
]
use_ema
:
True
ema_decay
:
0.9999
use_aa
:
True
ls_epsilon
:
0.1
LEARNING_RATE
:
function
:
'
ExponentialWarmup'
params
:
lr
:
0.032
OPTIMIZER
:
function
:
'
RMSProp'
params
:
momentum
:
0.9
rho
:
0.9
epsilon
:
0.001
regularizer
:
function
:
'
L2'
factor
:
0.00001
TRAIN
:
batch_size
:
512
num_workers
:
4
file_list
:
"
./dataset/ILSVRC2012/train_list.txt"
data_dir
:
"
./dataset/ILSVRC2012/"
shuffle_seed
:
0
transforms
:
-
DecodeImage
:
to_rgb
:
True
to_np
:
Fals
channel_first
:
False
-
RandCropImage
:
size
:
224
-
RandFlipImage
:
flip_code
:
1
-
AA
:
-
NormalizeImage
:
scale
:
1./255.
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
VALID
:
batch_size
:
128
num_workers
:
4
file_list
:
"
./dataset/ILSVRC2012/val_list.txt"
data_dir
:
"
./dataset/ILSVRC2012/"
shuffle_seed
:
0
transforms
:
-
DecodeImage
:
to_rgb
:
True
to_np
:
False
channel_first
:
False
-
ResizeImage
:
interpolation
:
2
resize_short
:
256
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
ppcls/data/imaug/operators.py
浏览文件 @
4ccfca29
...
@@ -25,6 +25,7 @@ import random
...
@@ -25,6 +25,7 @@ import random
import
cv2
import
cv2
import
numpy
as
np
import
numpy
as
np
from
autoargument
import
ImageNetPolicy
class
OperatorParamError
(
ValueError
):
class
OperatorParamError
(
ValueError
):
""" OperatorParamError
""" OperatorParamError
...
@@ -171,6 +172,18 @@ class RandFlipImage(object):
...
@@ -171,6 +172,18 @@ class RandFlipImage(object):
else
:
else
:
return
img
return
img
class
AA
(
object
):
def
__init__
(
self
):
self
.
policy
=
ImageNetPolicy
()
def
__call__
(
self
,
img
):
from
PIL
import
Image
img
=
np
.
ascontiguousarray
(
img
)
img
=
Image
.
fromarray
(
img
)
img
=
self
.
policy
(
img
)
img
=
np
.
asarray
(
img
)
class
NormalizeImage
(
object
):
class
NormalizeImage
(
object
):
""" normalize image such as substract mean, divide std
""" normalize image such as substract mean, divide std
...
...
ppcls/optimizer/learning_rate.py
浏览文件 @
4ccfca29
...
@@ -145,6 +145,59 @@ class CosineWarmup(object):
...
@@ -145,6 +145,59 @@ class CosineWarmup(object):
return
learning_rate
return
learning_rate
class
ExponentialWarmup
(
object
):
"""
Exponential learning rate decay with warmup
[0, warmup_epoch): linear warmup
[warmup_epoch, epochs): Exponential decay
Args:
lr(float): initial learning rate
step_each_epoch(int): steps each epoch
decay_epochs(float): decay epochs
decay_rate(float): decay rate
warmup_epoch(int): epoch num of warmup
"""
def
__init__
(
self
,
lr
,
step_each_epoch
,
decay_epochs
=
2.4
,
decay_rate
=
0.97
,
warmup_epoch
=
5
,
**
kwargs
):
super
(
CosineWarmup
,
self
).
__init__
()
self
.
lr
=
lr
self
.
step_each_epoch
=
step_each_epoch
self
.
decay_epochs
=
decay_epochs
*
self
.
step_each_epoch
self
.
decay_rate
=
decay_rate
self
.
warmup_epoch
=
fluid
.
layers
.
fill_constant
(
shape
=
[
1
],
value
=
float
(
warmup_epoch
),
dtype
=
'float32'
,
force_cpu
=
True
)
def
__call__
(
self
):
global_step
=
_decay_step_counter
()
learning_rate
=
fluid
.
layers
.
tensor
.
create_global_var
(
shape
=
[
1
],
value
=
0.0
,
dtype
=
'float32'
,
persistable
=
True
,
name
=
"learning_rate"
)
epoch
=
ops
.
floor
(
global_step
/
self
.
step_each_epoch
)
with
fluid
.
layers
.
control_flow
.
Switch
()
as
switch
:
with
switch
.
case
(
epoch
<
self
.
warmup_epoch
):
decayed_lr
=
self
.
lr
*
\
(
global_step
/
(
self
.
step_each_epoch
*
self
.
warmup_epoch
))
fluid
.
layers
.
tensor
.
assign
(
input
=
decayed_lr
,
output
=
learning_rate
)
with
switch
.
default
():
rest_step
=
global_step
-
self
.
warmup_epoch
*
self
.
step_each_epoch
div_res
=
ops
.
floor
(
rest_step
/
self
.
decay_epochs
)
decayed_lr
=
self
.
lr
*
(
self
.
decay_rate
**
div_res
)
fluid
.
layers
.
tensor
.
assign
(
input
=
decayed_lr
,
output
=
learning_rate
)
return
learning_rate
class
LearningRateBuilder
():
class
LearningRateBuilder
():
"""
"""
Build learning rate variable
Build learning rate variable
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录