未验证 提交 4afc61a3 编写于 作者: W Wei Shengyu 提交者: GitHub

Merge pull request #818 from cuicheng01/develop_reg

update resnet condigs
Global: Global:
rec_inference_model_dir: "./models/product_ResNet50_vd_Inshop_v1.0_infer/" rec_inference_model_dir: "./models/product_ResNet50_vd_Inshop_v1.0_infer"
batch_size: 1 batch_size: 1
use_gpu: True use_gpu: True
enable_mkldnn: True enable_mkldnn: True
...@@ -26,7 +26,7 @@ RecPostProcess: null ...@@ -26,7 +26,7 @@ RecPostProcess: null
# indexing engine config # indexing engine config
IndexProcess: IndexProcess:
index_path: "./dataset/product_demo_data_v1.0/query/" index_path: "./dataset/product_demo_data_v1.0/index"
image_root: "./dataset/product_demo_data_v1.0" image_root: "./dataset/product_demo_data_v1.0"
data_file: "./dataset/product_demo_data_v1.0/data_file.txt" data_file: "./dataset/product_demo_data_v1.0/data_file.txt"
delimiter: " " delimiter: " "
......
Global: Global:
infer_imgs: "./dataset/product_demo_data_v1.0/query/" infer_imgs: "./dataset/product_demo_data_v1.0/query"
det_inference_model_dir: "./models/ppyolov2_r50vd_dcn_mainbody_v1.0_infer/" det_inference_model_dir: "./models/ppyolov2_r50vd_dcn_mainbody_v1.0_infer"
rec_inference_model_dir: "./models/product_ResNet50_vd_Inshop_v1.0_infer/" rec_inference_model_dir: "./models/product_ResNet50_vd_Inshop_v1.0_infer"
batch_size: 1 batch_size: 1
image_shape: [3, 640, 640] image_shape: [3, 640, 640]
threshold: 0.0 threshold: 0.0
max_det_results: 3 max_det_results: 1
labe_list: labe_list:
- foreground - foreground
...@@ -48,7 +48,7 @@ RecPostProcess: null ...@@ -48,7 +48,7 @@ RecPostProcess: null
# indexing engine config # indexing engine config
IndexProcess: IndexProcess:
index_path: "./dataset/product_demo_data_v1.0/index/" index_path: "./dataset/product_demo_data_v1.0/index"
search_budget: 100 search_budget: 100
return_k: 5 return_k: 5
dist_type: "IP" dist_type: "IP"
...@@ -30,10 +30,10 @@ Loss: ...@@ -30,10 +30,10 @@ Loss:
Optimizer: Optimizer:
name: Momentum name: "Momentum"
momentum: 0.9 momentum: 0.9
lr: lr:
name: Piecewise name: "Piecewise"
learning_rate: 0.1 learning_rate: 0.1
decay_epochs: [30, 60, 90] decay_epochs: [30, 60, 90]
values: [0.1, 0.01, 0.001, 0.0001] values: [0.1, 0.01, 0.001, 0.0001]
...@@ -46,80 +46,80 @@ Optimizer: ...@@ -46,80 +46,80 @@ Optimizer:
DataLoader: DataLoader:
Train: Train:
dataset: dataset:
name: ImageNetDataset name: "ImageNetDataset"
image_root: "./dataset/ILSVRC2012/" image_root: "./dataset/ILSVRC2012/"
cls_label_path: "./dataset/ILSVRC2012/train_list.txt" cls_label_path: "./dataset/ILSVRC2012/train_list.txt"
transform_ops: transform_ops:
- RandCropImage: - RandCropImage:
size: 224 size: 224
- RandFlipImage: - RandFlipImage:
flip_code: 1 flip_code: 1
- NormalizeImage: - NormalizeImage:
scale: 0.00392157 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
sampler: sampler:
name: DistributedBatchSampler name: "DistributedBatchSampler"
batch_size: 64 batch_size: 64
drop_last: False drop_last: False
shuffle: True shuffle: True
loader: loader:
num_workers: 6 num_workers: 6
use_shared_memory: True use_shared_memory: True
Eval: Eval:
# TOTO: modify to the latest trainer # TOTO: modify to the latest trainer
dataset: dataset:
name: ImageNetDataset name: "ImageNetDataset"
image_root: "./dataset/ILSVRC2012/" image_root: "./dataset/ILSVRC2012/"
cls_label_path: "./dataset/ILSVRC2012/val_list.txt" cls_label_path: "./dataset/ILSVRC2012/val_list.txt"
transform_ops: transform_ops:
- ResizeImage: - ResizeImage:
resize_short: 256 resize_short: 256
- CropImage: - CropImage:
size: 224 size: 224
- NormalizeImage: - NormalizeImage:
scale: 0.00392157 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
sampler: sampler:
name: DistributedBatchSampler name: "DistributedBatchSampler"
batch_size: 64 batch_size: 64
drop_last: False drop_last: False
shuffle: False shuffle: False
loader: loader:
num_workers: 6 num_workers: 6
use_shared_memory: True use_shared_memory: True
Infer: Infer:
infer_imgs: "docs/images/whl/demo.jpg" infer_imgs: "docs/images/whl/demo.jpg"
batch_size: 10 batch_size: 10
transforms: transforms:
- DecodeImage: - DecodeImage:
to_rgb: True to_rgb: True
channel_first: False channel_first: False
- ResizeImage: - ResizeImage:
resize_short: 256 resize_short: 256
- CropImage: - CropImage:
size: 224 size: 224
- NormalizeImage: - NormalizeImage:
scale: 1.0/255.0 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
- ToCHWImage: - ToCHWImage:
PostProcess: PostProcess:
name: Topk name: "Topk"
topk: 5 topk: 5
class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt" class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt"
Metric: Metric:
Train: Train:
- TopkAcc: - TopkAcc:
topk: [1, 5] topk: [1, 5]
Eval: Eval:
- TopkAcc: - TopkAcc:
topk: [1, 5] topk: [1, 5]
...@@ -24,16 +24,17 @@ Loss: ...@@ -24,16 +24,17 @@ Loss:
Train: Train:
- CELoss: - CELoss:
weight: 1.0 weight: 1.0
epsilon: 0.1
Eval: Eval:
- CELoss: - CELoss:
weight: 1.0 weight: 1.0
Optimizer: Optimizer:
name: Momentum name: "Momentum"
momentum: 0.9 momentum: 0.9
lr: lr:
name: Cosine name: "Cosine"
learning_rate: 0.1 learning_rate: 0.1
regularizer: regularizer:
name: 'L2' name: 'L2'
...@@ -44,80 +45,81 @@ Optimizer: ...@@ -44,80 +45,81 @@ Optimizer:
DataLoader: DataLoader:
Train: Train:
dataset: dataset:
name: ImageNetDataset name: "ImageNetDataset"
image_root: "./dataset/ILSVRC2012/" image_root: "./dataset/ILSVRC2012/"
cls_label_path: "./dataset/ILSVRC2012/train_list.txt" cls_label_path: "./dataset/ILSVRC2012/train_list.txt"
transform_ops: transform_ops:
- RandCropImage: - RandCropImage:
size: 224 size: 224
- RandFlipImage: - RandFlipImage:
flip_code: 1 flip_code: 1
- NormalizeImage: - NormalizeImage:
scale: 0.00392157 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
batch_transform_ops:
- MixupOperator:
alpha: 0.2
sampler: sampler:
name: DistributedBatchSampler name: "DistributedBatchSampler"
batch_size: 64 batch_size: 64
drop_last: False drop_last: False
shuffle: True shuffle: True
loader: loader:
num_workers: 6 num_workers: 6
use_shared_memory: True use_shared_memory: True
Eval: Eval:
# TOTO: modify to the latest trainer # TOTO: modify to the latest trainer
dataset: dataset:
name: ImageNetDataset name: "ImageNetDataset"
image_root: "./dataset/ILSVRC2012/" image_root: "./dataset/ILSVRC2012/"
cls_label_path: "./dataset/ILSVRC2012/val_list.txt" cls_label_path: "./dataset/ILSVRC2012/val_list.txt"
transform_ops: transform_ops:
- ResizeImage: - ResizeImage:
resize_short: 256 resize_short: 256
- CropImage: - CropImage:
size: 224 size: 224
- NormalizeImage: - NormalizeImage:
scale: 0.00392157 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
sampler: sampler:
name: DistributedBatchSampler name: "DistributedBatchSampler"
batch_size: 64 batch_size: 64
drop_last: False drop_last: False
shuffle: False shuffle: False
loader: loader:
num_workers: 6 num_workers: 6
use_shared_memory: True use_shared_memory: True
Infer: Infer:
infer_imgs: "docs/images/whl/demo.jpg" infer_imgs: "docs/images/whl/demo.jpg"
batch_size: 10 batch_size: 10
transforms: transforms:
- DecodeImage: - DecodeImage:
to_rgb: True to_rgb: True
channel_first: False channel_first: False
- ResizeImage: - ResizeImage:
resize_short: 256 resize_short: 256
- CropImage: - CropImage:
size: 224 size: 224
- NormalizeImage: - NormalizeImage:
scale: 1.0/255.0 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
- ToCHWImage: - ToCHWImage:
PostProcess: PostProcess:
name: Topk name: "Topk"
topk: 5 topk: 5
class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt" class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt"
Metric: Metric:
Train: Train:
- TopkAcc: Eval:
topk: [1, 5]
Eval:
- TopkAcc: - TopkAcc:
topk: [1, 5] topk: [1, 5]
...@@ -30,10 +30,10 @@ Loss: ...@@ -30,10 +30,10 @@ Loss:
Optimizer: Optimizer:
name: Momentum name: "Momentum"
momentum: 0.9 momentum: 0.9
lr: lr:
name: Piecewise name: "Piecewise"
learning_rate: 0.1 learning_rate: 0.1
decay_epochs: [30, 60, 90] decay_epochs: [30, 60, 90]
values: [0.1, 0.01, 0.001, 0.0001] values: [0.1, 0.01, 0.001, 0.0001]
...@@ -46,80 +46,80 @@ Optimizer: ...@@ -46,80 +46,80 @@ Optimizer:
DataLoader: DataLoader:
Train: Train:
dataset: dataset:
name: ImageNetDataset name: "ImageNetDataset"
image_root: "./dataset/ILSVRC2012/" image_root: "./dataset/ILSVRC2012/"
cls_label_path: "./dataset/ILSVRC2012/train_list.txt" cls_label_path: "./dataset/ILSVRC2012/train_list.txt"
transform_ops: transform_ops:
- RandCropImage: - RandCropImage:
size: 224 size: 224
- RandFlipImage: - RandFlipImage:
flip_code: 1 flip_code: 1
- NormalizeImage: - NormalizeImage:
scale: 0.00392157 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
sampler: sampler:
name: DistributedBatchSampler name: "DistributedBatchSampler"
batch_size: 64 batch_size: 64
drop_last: False drop_last: False
shuffle: True shuffle: True
loader: loader:
num_workers: 6 num_workers: 6
use_shared_memory: True use_shared_memory: True
Eval: Eval:
# TOTO: modify to the latest trainer # TOTO: modify to the latest trainer
dataset: dataset:
name: ImageNetDataset name: "ImageNetDataset"
image_root: "./dataset/ILSVRC2012/" image_root: "./dataset/ILSVRC2012/"
cls_label_path: "./dataset/ILSVRC2012/val_list.txt" cls_label_path: "./dataset/ILSVRC2012/val_list.txt"
transform_ops: transform_ops:
- ResizeImage: - ResizeImage:
resize_short: 256 resize_short: 256
- CropImage: - CropImage:
size: 224 size: 224
- NormalizeImage: - NormalizeImage:
scale: 0.00392157 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
sampler: sampler:
name: DistributedBatchSampler name: "DistributedBatchSampler"
batch_size: 64 batch_size: 64
drop_last: False drop_last: False
shuffle: False shuffle: False
loader: loader:
num_workers: 6 num_workers: 6
use_shared_memory: True use_shared_memory: True
Infer: Infer:
infer_imgs: "docs/images/whl/demo.jpg" infer_imgs: "docs/images/whl/demo.jpg"
batch_size: 10 batch_size: 10
transforms: transforms:
- DecodeImage: - DecodeImage:
to_rgb: True to_rgb: True
channel_first: False channel_first: False
- ResizeImage: - ResizeImage:
resize_short: 256 resize_short: 256
- CropImage: - CropImage:
size: 224 size: 224
- NormalizeImage: - NormalizeImage:
scale: 1.0/255.0 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
- ToCHWImage: - ToCHWImage:
PostProcess: PostProcess:
name: Topk name: "Topk"
topk: 5 topk: 5
class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt" class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt"
Metric: Metric:
Train: Train:
- TopkAcc: - TopkAcc:
topk: [1, 5] topk: [1, 5]
Eval: Eval:
- TopkAcc: - TopkAcc:
topk: [1, 5] topk: [1, 5]
...@@ -24,16 +24,17 @@ Loss: ...@@ -24,16 +24,17 @@ Loss:
Train: Train:
- CELoss: - CELoss:
weight: 1.0 weight: 1.0
epsilon: 0.1
Eval: Eval:
- CELoss: - CELoss:
weight: 1.0 weight: 1.0
Optimizer: Optimizer:
name: Momentum name: "Momentum"
momentum: 0.9 momentum: 0.9
lr: lr:
name: Cosine name: "Cosine"
learning_rate: 0.1 learning_rate: 0.1
regularizer: regularizer:
name: 'L2' name: 'L2'
...@@ -44,80 +45,81 @@ Optimizer: ...@@ -44,80 +45,81 @@ Optimizer:
DataLoader: DataLoader:
Train: Train:
dataset: dataset:
name: ImageNetDataset name: "ImageNetDataset"
image_root: "./dataset/ILSVRC2012/" image_root: "./dataset/ILSVRC2012/"
cls_label_path: "./dataset/ILSVRC2012/train_list.txt" cls_label_path: "./dataset/ILSVRC2012/train_list.txt"
transform_ops: transform_ops:
- RandCropImage: - RandCropImage:
size: 224 size: 224
- RandFlipImage: - RandFlipImage:
flip_code: 1 flip_code: 1
- NormalizeImage: - NormalizeImage:
scale: 0.00392157 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
batch_transform_ops:
- MixupOperator:
alpha: 0.2
sampler: sampler:
name: DistributedBatchSampler name: "DistributedBatchSampler"
batch_size: 64 batch_size: 64
drop_last: False drop_last: False
shuffle: True shuffle: True
loader: loader:
num_workers: 6 num_workers: 6
use_shared_memory: True use_shared_memory: True
Eval: Eval:
# TOTO: modify to the latest trainer # TOTO: modify to the latest trainer
dataset: dataset:
name: ImageNetDataset name: "ImageNetDataset"
image_root: "./dataset/ILSVRC2012/" image_root: "./dataset/ILSVRC2012/"
cls_label_path: "./dataset/ILSVRC2012/val_list.txt" cls_label_path: "./dataset/ILSVRC2012/val_list.txt"
transform_ops: transform_ops:
- ResizeImage: - ResizeImage:
resize_short: 256 resize_short: 256
- CropImage: - CropImage:
size: 224 size: 224
- NormalizeImage: - NormalizeImage:
scale: 0.00392157 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
sampler: sampler:
name: DistributedBatchSampler name: "DistributedBatchSampler"
batch_size: 64 batch_size: 64
drop_last: False drop_last: False
shuffle: False shuffle: False
loader: loader:
num_workers: 6 num_workers: 6
use_shared_memory: True use_shared_memory: True
Infer: Infer:
infer_imgs: "docs/images/whl/demo.jpg" infer_imgs: "docs/images/whl/demo.jpg"
batch_size: 10 batch_size: 10
transforms: transforms:
- DecodeImage: - DecodeImage:
to_rgb: True to_rgb: True
channel_first: False channel_first: False
- ResizeImage: - ResizeImage:
resize_short: 256 resize_short: 256
- CropImage: - CropImage:
size: 224 size: 224
- NormalizeImage: - NormalizeImage:
scale: 1.0/255.0 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
- ToCHWImage: - ToCHWImage:
PostProcess: PostProcess:
name: Topk name: "Topk"
topk: 5 topk: 5
class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt" class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt"
Metric: Metric:
Train: Train:
- TopkAcc: Eval:
topk: [1, 5]
Eval:
- TopkAcc: - TopkAcc:
topk: [1, 5] topk: [1, 5]
...@@ -30,10 +30,10 @@ Loss: ...@@ -30,10 +30,10 @@ Loss:
Optimizer: Optimizer:
name: Momentum name: "Momentum"
momentum: 0.9 momentum: 0.9
lr: lr:
name: Piecewise name: "Piecewise"
learning_rate: 0.1 learning_rate: 0.1
decay_epochs: [30, 60, 90] decay_epochs: [30, 60, 90]
values: [0.1, 0.01, 0.001, 0.0001] values: [0.1, 0.01, 0.001, 0.0001]
...@@ -46,80 +46,80 @@ Optimizer: ...@@ -46,80 +46,80 @@ Optimizer:
DataLoader: DataLoader:
Train: Train:
dataset: dataset:
name: ImageNetDataset name: "ImageNetDataset"
image_root: "./dataset/ILSVRC2012/" image_root: "./dataset/ILSVRC2012/"
cls_label_path: "./dataset/ILSVRC2012/train_list.txt" cls_label_path: "./dataset/ILSVRC2012/train_list.txt"
transform_ops: transform_ops:
- RandCropImage: - RandCropImage:
size: 224 size: 224
- RandFlipImage: - RandFlipImage:
flip_code: 1 flip_code: 1
- NormalizeImage: - NormalizeImage:
scale: 0.00392157 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
sampler: sampler:
name: DistributedBatchSampler name: "DistributedBatchSampler"
batch_size: 64 batch_size: 64
drop_last: False drop_last: False
shuffle: True shuffle: True
loader: loader:
num_workers: 6 num_workers: 6
use_shared_memory: True use_shared_memory: True
Eval: Eval:
# TOTO: modify to the latest trainer # TOTO: modify to the latest trainer
dataset: dataset:
name: ImageNetDataset name: "ImageNetDataset"
image_root: "./dataset/ILSVRC2012/" image_root: "./dataset/ILSVRC2012/"
cls_label_path: "./dataset/ILSVRC2012/val_list.txt" cls_label_path: "./dataset/ILSVRC2012/val_list.txt"
transform_ops: transform_ops:
- ResizeImage: - ResizeImage:
resize_short: 256 resize_short: 256
- CropImage: - CropImage:
size: 224 size: 224
- NormalizeImage: - NormalizeImage:
scale: 0.00392157 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
sampler: sampler:
name: DistributedBatchSampler name: "DistributedBatchSampler"
batch_size: 64 batch_size: 64
drop_last: False drop_last: False
shuffle: False shuffle: False
loader: loader:
num_workers: 6 num_workers: 6
use_shared_memory: True use_shared_memory: True
Infer: Infer:
infer_imgs: "docs/images/whl/demo.jpg" infer_imgs: "docs/images/whl/demo.jpg"
batch_size: 10 batch_size: 10
transforms: transforms:
- DecodeImage: - DecodeImage:
to_rgb: True to_rgb: True
channel_first: False channel_first: False
- ResizeImage: - ResizeImage:
resize_short: 256 resize_short: 256
- CropImage: - CropImage:
size: 224 size: 224
- NormalizeImage: - NormalizeImage:
scale: 1.0/255.0 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
- ToCHWImage: - ToCHWImage:
PostProcess: PostProcess:
name: Topk name: "Topk"
topk: 5 topk: 5
class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt" class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt"
Metric: Metric:
Train: Train:
- TopkAcc: - TopkAcc:
topk: [1, 5] topk: [1, 5]
Eval: Eval:
- TopkAcc: - TopkAcc:
topk: [1, 5] topk: [1, 5]
...@@ -24,16 +24,17 @@ Loss: ...@@ -24,16 +24,17 @@ Loss:
Train: Train:
- CELoss: - CELoss:
weight: 1.0 weight: 1.0
epsilon: 0.1
Eval: Eval:
- CELoss: - CELoss:
weight: 1.0 weight: 1.0
Optimizer: Optimizer:
name: Momentum name: "Momentum"
momentum: 0.9 momentum: 0.9
lr: lr:
name: Cosine name: "Cosine"
learning_rate: 0.1 learning_rate: 0.1
regularizer: regularizer:
name: 'L2' name: 'L2'
...@@ -44,80 +45,81 @@ Optimizer: ...@@ -44,80 +45,81 @@ Optimizer:
DataLoader: DataLoader:
Train: Train:
dataset: dataset:
name: ImageNetDataset name: "ImageNetDataset"
image_root: "./dataset/ILSVRC2012/" image_root: "./dataset/ILSVRC2012/"
cls_label_path: "./dataset/ILSVRC2012/train_list.txt" cls_label_path: "./dataset/ILSVRC2012/train_list.txt"
transform_ops: transform_ops:
- RandCropImage: - RandCropImage:
size: 224 size: 224
- RandFlipImage: - RandFlipImage:
flip_code: 1 flip_code: 1
- NormalizeImage: - NormalizeImage:
scale: 0.00392157 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
batch_transform_ops:
- MixupOperator:
alpha: 0.2
sampler: sampler:
name: DistributedBatchSampler name: "DistributedBatchSampler"
batch_size: 64 batch_size: 64
drop_last: False drop_last: False
shuffle: True shuffle: True
loader: loader:
num_workers: 6 num_workers: 6
use_shared_memory: True use_shared_memory: True
Eval: Eval:
# TOTO: modify to the latest trainer # TOTO: modify to the latest trainer
dataset: dataset:
name: ImageNetDataset name: "ImageNetDataset"
image_root: "./dataset/ILSVRC2012/" image_root: "./dataset/ILSVRC2012/"
cls_label_path: "./dataset/ILSVRC2012/val_list.txt" cls_label_path: "./dataset/ILSVRC2012/val_list.txt"
transform_ops: transform_ops:
- ResizeImage: - ResizeImage:
resize_short: 256 resize_short: 256
- CropImage: - CropImage:
size: 224 size: 224
- NormalizeImage: - NormalizeImage:
scale: 0.00392157 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
sampler: sampler:
name: DistributedBatchSampler name: "DistributedBatchSampler"
batch_size: 64 batch_size: 64
drop_last: False drop_last: False
shuffle: False shuffle: False
loader: loader:
num_workers: 6 num_workers: 6
use_shared_memory: True use_shared_memory: True
Infer: Infer:
infer_imgs: "docs/images/whl/demo.jpg" infer_imgs: "docs/images/whl/demo.jpg"
batch_size: 10 batch_size: 10
transforms: transforms:
- DecodeImage: - DecodeImage:
to_rgb: True to_rgb: True
channel_first: False channel_first: False
- ResizeImage: - ResizeImage:
resize_short: 256 resize_short: 256
- CropImage: - CropImage:
size: 224 size: 224
- NormalizeImage: - NormalizeImage:
scale: 1.0/255.0 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
- ToCHWImage: - ToCHWImage:
PostProcess: PostProcess:
name: Topk name: "Topk"
topk: 5 topk: 5
class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt" class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt"
Metric: Metric:
Train: Train:
- TopkAcc: Eval:
topk: [1, 5]
Eval:
- TopkAcc: - TopkAcc:
topk: [1, 5] topk: [1, 5]
...@@ -24,16 +24,17 @@ Loss: ...@@ -24,16 +24,17 @@ Loss:
Train: Train:
- CELoss: - CELoss:
weight: 1.0 weight: 1.0
epsilon: 0.1
Eval: Eval:
- CELoss: - CELoss:
weight: 1.0 weight: 1.0
Optimizer: Optimizer:
name: Momentum name: "Momentum"
momentum: 0.9 momentum: 0.9
lr: lr:
name: Cosine name: "Cosine"
learning_rate: 0.1 learning_rate: 0.1
regularizer: regularizer:
name: 'L2' name: 'L2'
...@@ -44,80 +45,81 @@ Optimizer: ...@@ -44,80 +45,81 @@ Optimizer:
DataLoader: DataLoader:
Train: Train:
dataset: dataset:
name: ImageNetDataset name: "ImageNetDataset"
image_root: "./dataset/ILSVRC2012/" image_root: "./dataset/ILSVRC2012/"
cls_label_path: "./dataset/ILSVRC2012/train_list.txt" cls_label_path: "./dataset/ILSVRC2012/train_list.txt"
transform_ops: transform_ops:
- RandCropImage: - RandCropImage:
size: 224 size: 224
- RandFlipImage: - RandFlipImage:
flip_code: 1 flip_code: 1
- NormalizeImage: - NormalizeImage:
scale: 0.00392157 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
batch_transform_ops:
- MixupOperator:
alpha: 0.2
sampler: sampler:
name: DistributedBatchSampler name: "DistributedBatchSampler"
batch_size: 64 batch_size: 64
drop_last: False drop_last: False
shuffle: True shuffle: True
loader: loader:
num_workers: 6 num_workers: 6
use_shared_memory: True use_shared_memory: True
Eval: Eval:
# TOTO: modify to the latest trainer # TOTO: modify to the latest trainer
dataset: dataset:
name: ImageNetDataset name: "ImageNetDataset"
image_root: "./dataset/ILSVRC2012/" image_root: "./dataset/ILSVRC2012/"
cls_label_path: "./dataset/ILSVRC2012/val_list.txt" cls_label_path: "./dataset/ILSVRC2012/val_list.txt"
transform_ops: transform_ops:
- ResizeImage: - ResizeImage:
resize_short: 256 resize_short: 256
- CropImage: - CropImage:
size: 224 size: 224
- NormalizeImage: - NormalizeImage:
scale: 0.00392157 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
sampler: sampler:
name: DistributedBatchSampler name: "DistributedBatchSampler"
batch_size: 64 batch_size: 64
drop_last: False drop_last: False
shuffle: False shuffle: False
loader: loader:
num_workers: 6 num_workers: 6
use_shared_memory: True use_shared_memory: True
Infer: Infer:
infer_imgs: "docs/images/whl/demo.jpg" infer_imgs: "docs/images/whl/demo.jpg"
batch_size: 10 batch_size: 10
transforms: transforms:
- DecodeImage: - DecodeImage:
to_rgb: True to_rgb: True
channel_first: False channel_first: False
- ResizeImage: - ResizeImage:
resize_short: 256 resize_short: 256
- CropImage: - CropImage:
size: 224 size: 224
- NormalizeImage: - NormalizeImage:
scale: 1.0/255.0 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
- ToCHWImage: - ToCHWImage:
PostProcess: PostProcess:
name: Topk name: "Topk"
topk: 5 topk: 5
class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt" class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt"
Metric: Metric:
Train: Train:
- TopkAcc: Eval:
topk: [1, 5]
Eval:
- TopkAcc: - TopkAcc:
topk: [1, 5] topk: [1, 5]
...@@ -30,10 +30,10 @@ Loss: ...@@ -30,10 +30,10 @@ Loss:
Optimizer: Optimizer:
name: Momentum name: "Momentum"
momentum: 0.9 momentum: 0.9
lr: lr:
name: Piecewise name: "Piecewise"
learning_rate: 0.1 learning_rate: 0.1
decay_epochs: [30, 60, 90] decay_epochs: [30, 60, 90]
values: [0.1, 0.01, 0.001, 0.0001] values: [0.1, 0.01, 0.001, 0.0001]
...@@ -46,80 +46,80 @@ Optimizer: ...@@ -46,80 +46,80 @@ Optimizer:
DataLoader: DataLoader:
Train: Train:
dataset: dataset:
name: ImageNetDataset name: "ImageNetDataset"
image_root: "./dataset/ILSVRC2012/" image_root: "./dataset/ILSVRC2012/"
cls_label_path: "./dataset/ILSVRC2012/train_list.txt" cls_label_path: "./dataset/ILSVRC2012/train_list.txt"
transform_ops: transform_ops:
- RandCropImage: - RandCropImage:
size: 224 size: 224
- RandFlipImage: - RandFlipImage:
flip_code: 1 flip_code: 1
- NormalizeImage: - NormalizeImage:
scale: 0.00392157 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
sampler: sampler:
name: DistributedBatchSampler name: "DistributedBatchSampler"
batch_size: 64 batch_size: 64
drop_last: False drop_last: False
shuffle: True shuffle: True
loader: loader:
num_workers: 6 num_workers: 6
use_shared_memory: True use_shared_memory: True
Eval: Eval:
# TOTO: modify to the latest trainer # TOTO: modify to the latest trainer
dataset: dataset:
name: ImageNetDataset name: "ImageNetDataset"
image_root: "./dataset/ILSVRC2012/" image_root: "./dataset/ILSVRC2012/"
cls_label_path: "./dataset/ILSVRC2012/val_list.txt" cls_label_path: "./dataset/ILSVRC2012/val_list.txt"
transform_ops: transform_ops:
- ResizeImage: - ResizeImage:
resize_short: 256 resize_short: 256
- CropImage: - CropImage:
size: 224 size: 224
- NormalizeImage: - NormalizeImage:
scale: 0.00392157 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
sampler: sampler:
name: DistributedBatchSampler name: "DistributedBatchSampler"
batch_size: 64 batch_size: 64
drop_last: False drop_last: False
shuffle: False shuffle: False
loader: loader:
num_workers: 6 num_workers: 6
use_shared_memory: True use_shared_memory: True
Infer: Infer:
infer_imgs: "docs/images/whl/demo.jpg" infer_imgs: "docs/images/whl/demo.jpg"
batch_size: 10 batch_size: 10
transforms: transforms:
- DecodeImage: - DecodeImage:
to_rgb: True to_rgb: True
channel_first: False channel_first: False
- ResizeImage: - ResizeImage:
resize_short: 256 resize_short: 256
- CropImage: - CropImage:
size: 224 size: 224
- NormalizeImage: - NormalizeImage:
scale: 1.0/255.0 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
- ToCHWImage: - ToCHWImage:
PostProcess: PostProcess:
name: Topk name: "Topk"
topk: 5 topk: 5
class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt" class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt"
Metric: Metric:
Train: Train:
- TopkAcc: - TopkAcc:
topk: [1, 5] topk: [1, 5]
Eval: Eval:
- TopkAcc: - TopkAcc:
topk: [1, 5] topk: [1, 5]
...@@ -24,16 +24,17 @@ Loss: ...@@ -24,16 +24,17 @@ Loss:
Train: Train:
- CELoss: - CELoss:
weight: 1.0 weight: 1.0
epsilon: 0.1
Eval: Eval:
- CELoss: - CELoss:
weight: 1.0 weight: 1.0
Optimizer: Optimizer:
name: Momentum name: "Momentum"
momentum: 0.9 momentum: 0.9
lr: lr:
name: Cosine name: "Cosine"
learning_rate: 0.1 learning_rate: 0.1
regularizer: regularizer:
name: 'L2' name: 'L2'
...@@ -44,80 +45,81 @@ Optimizer: ...@@ -44,80 +45,81 @@ Optimizer:
DataLoader: DataLoader:
Train: Train:
dataset: dataset:
name: ImageNetDataset name: "ImageNetDataset"
image_root: "./dataset/ILSVRC2012/" image_root: "./dataset/ILSVRC2012/"
cls_label_path: "./dataset/ILSVRC2012/train_list.txt" cls_label_path: "./dataset/ILSVRC2012/train_list.txt"
transform_ops: transform_ops:
- RandCropImage: - RandCropImage:
size: 224 size: 224
- RandFlipImage: - RandFlipImage:
flip_code: 1 flip_code: 1
- NormalizeImage: - NormalizeImage:
scale: 0.00392157 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
batch_transform_ops:
- MixupOperator:
alpha: 0.2
sampler: sampler:
name: DistributedBatchSampler name: "DistributedBatchSampler"
batch_size: 64 batch_size: 64
drop_last: False drop_last: False
shuffle: True shuffle: True
loader: loader:
num_workers: 6 num_workers: 6
use_shared_memory: True use_shared_memory: True
Eval: Eval:
# TOTO: modify to the latest trainer # TOTO: modify to the latest trainer
dataset: dataset:
name: ImageNetDataset name: "ImageNetDataset"
image_root: "./dataset/ILSVRC2012/" image_root: "./dataset/ILSVRC2012/"
cls_label_path: "./dataset/ILSVRC2012/val_list.txt" cls_label_path: "./dataset/ILSVRC2012/val_list.txt"
transform_ops: transform_ops:
- ResizeImage: - ResizeImage:
resize_short: 256 resize_short: 256
- CropImage: - CropImage:
size: 224 size: 224
- NormalizeImage: - NormalizeImage:
scale: 0.00392157 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
sampler: sampler:
name: DistributedBatchSampler name: "DistributedBatchSampler"
batch_size: 64 batch_size: 64
drop_last: False drop_last: False
shuffle: False shuffle: False
loader: loader:
num_workers: 6 num_workers: 6
use_shared_memory: True use_shared_memory: True
Infer: Infer:
infer_imgs: "docs/images/whl/demo.jpg" infer_imgs: "docs/images/whl/demo.jpg"
batch_size: 10 batch_size: 10
transforms: transforms:
- DecodeImage: - DecodeImage:
to_rgb: True to_rgb: True
channel_first: False channel_first: False
- ResizeImage: - ResizeImage:
resize_short: 256 resize_short: 256
- CropImage: - CropImage:
size: 224 size: 224
- NormalizeImage: - NormalizeImage:
scale: 1.0/255.0 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
- ToCHWImage: - ToCHWImage:
PostProcess: PostProcess:
name: Topk name: "Topk"
topk: 5 topk: 5
class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt" class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt"
Metric: Metric:
Train: Train:
- TopkAcc: Eval:
topk: [1, 5]
Eval:
- TopkAcc: - TopkAcc:
topk: [1, 5] topk: [1, 5]
...@@ -30,10 +30,10 @@ Loss: ...@@ -30,10 +30,10 @@ Loss:
Optimizer: Optimizer:
name: Momentum name: "Momentum"
momentum: 0.9 momentum: 0.9
lr: lr:
name: Piecewise name: "Piecewise"
learning_rate: 0.1 learning_rate: 0.1
decay_epochs: [30, 60, 90] decay_epochs: [30, 60, 90]
values: [0.1, 0.01, 0.001, 0.0001] values: [0.1, 0.01, 0.001, 0.0001]
...@@ -46,80 +46,80 @@ Optimizer: ...@@ -46,80 +46,80 @@ Optimizer:
DataLoader: DataLoader:
Train: Train:
dataset: dataset:
name: ImageNetDataset name: "ImageNetDataset"
image_root: "./dataset/ILSVRC2012/" image_root: "./dataset/ILSVRC2012/"
cls_label_path: "./dataset/ILSVRC2012/train_list.txt" cls_label_path: "./dataset/ILSVRC2012/train_list.txt"
transform_ops: transform_ops:
- RandCropImage: - RandCropImage:
size: 224 size: 224
- RandFlipImage: - RandFlipImage:
flip_code: 1 flip_code: 1
- NormalizeImage: - NormalizeImage:
scale: 0.00392157 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
sampler: sampler:
name: DistributedBatchSampler name: "DistributedBatchSampler"
batch_size: 64 batch_size: 64
drop_last: False drop_last: False
shuffle: True shuffle: True
loader: loader:
num_workers: 6 num_workers: 6
use_shared_memory: True use_shared_memory: True
Eval: Eval:
# TOTO: modify to the latest trainer # TOTO: modify to the latest trainer
dataset: dataset:
name: ImageNetDataset name: "ImageNetDataset"
image_root: "./dataset/ILSVRC2012/" image_root: "./dataset/ILSVRC2012/"
cls_label_path: "./dataset/ILSVRC2012/val_list.txt" cls_label_path: "./dataset/ILSVRC2012/val_list.txt"
transform_ops: transform_ops:
- ResizeImage: - ResizeImage:
resize_short: 256 resize_short: 256
- CropImage: - CropImage:
size: 224 size: 224
- NormalizeImage: - NormalizeImage:
scale: 0.00392157 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
sampler: sampler:
name: DistributedBatchSampler name: "DistributedBatchSampler"
batch_size: 64 batch_size: 64
drop_last: False drop_last: False
shuffle: False shuffle: False
loader: loader:
num_workers: 6 num_workers: 6
use_shared_memory: True use_shared_memory: True
Infer: Infer:
infer_imgs: "docs/images/whl/demo.jpg" infer_imgs: "docs/images/whl/demo.jpg"
batch_size: 10 batch_size: 10
transforms: transforms:
- DecodeImage: - DecodeImage:
to_rgb: True to_rgb: True
channel_first: False channel_first: False
- ResizeImage: - ResizeImage:
resize_short: 256 resize_short: 256
- CropImage: - CropImage:
size: 224 size: 224
- NormalizeImage: - NormalizeImage:
scale: 1.0/255.0 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
- ToCHWImage: - ToCHWImage:
PostProcess: PostProcess:
name: Topk name: "Topk"
topk: 5 topk: 5
class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt" class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt"
Metric: Metric:
Train: Train:
- TopkAcc: - TopkAcc:
topk: [1, 5] topk: [1, 5]
Eval: Eval:
- TopkAcc: - TopkAcc:
topk: [1, 5] topk: [1, 5]
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: "./output/"
device: "gpu"
class_num: 1000
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 120
print_batch_step: 10
use_visualdl: False
image_shape: [3, 224, 224]
infer_imgs:
# model architecture
Arch:
name: "RecModel"
Backbone:
name: "ResNet50"
Stoplayer:
name: "flatten_0"
output_dim: 2048
embedding_size: 512
Head:
name: "ArcMargin"
margin: 0.5
scale: 80
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: Piecewise
learning_rate: 0.1
decay_epochs: [30, 60, 90]
values: [0.1, 0.01, 0.001, 0.0001]
regularizer:
name: 'L2'
coeff: 0.0001
# data loader for train and eval
DataLoader:
Train:
# Dataset:
# Sampler:
# Loader:
batch_size: 256
num_workers: 4
file_list: "./dataset/ILSVRC2012/train_list.txt"
data_dir: "./dataset/ILSVRC2012/"
shuffle_seed: 0
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- RandCropImage:
size: 224
- RandFlipImage:
flip_code: 1
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
Eval:
# TOTO: modify to the latest trainer
# Dataset:
# Sampler:
# Loader:
batch_size: 128
num_workers: 4
file_list: "./dataset/ILSVRC2012/val_list.txt"
data_dir: "./dataset/ILSVRC2012/"
shuffle_seed: 0
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
Metric:
Train:
- Topk:
k: [1, 5]
Eval:
- Topk:
k: [1, 5]
...@@ -24,16 +24,17 @@ Loss: ...@@ -24,16 +24,17 @@ Loss:
Train: Train:
- CELoss: - CELoss:
weight: 1.0 weight: 1.0
epsilon: 0.1
Eval: Eval:
- CELoss: - CELoss:
weight: 1.0 weight: 1.0
Optimizer: Optimizer:
name: Momentum name: "Momentum"
momentum: 0.9 momentum: 0.9
lr: lr:
name: Cosine name: "Cosine"
learning_rate: 0.1 learning_rate: 0.1
regularizer: regularizer:
name: 'L2' name: 'L2'
...@@ -44,81 +45,81 @@ Optimizer: ...@@ -44,81 +45,81 @@ Optimizer:
DataLoader: DataLoader:
Train: Train:
dataset: dataset:
name: ImageNetDataset name: "ImageNetDataset"
image_root: "./dataset/ILSVRC2012/" image_root: "./dataset/ILSVRC2012/"
cls_label_path: "./dataset/ILSVRC2012/train_list.txt" cls_label_path: "./dataset/ILSVRC2012/train_list.txt"
transform_ops: transform_ops:
- RandCropImage: - RandCropImage:
size: 224 size: 224
- RandFlipImage: - RandFlipImage:
flip_code: 1 flip_code: 1
- NormalizeImage: - NormalizeImage:
scale: 0.00392157 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
batch_transform_ops:
- MixupOperator:
alpha: 0.2
sampler: sampler:
name: DistributedBatchSampler name: "DistributedBatchSampler"
batch_size: 64 batch_size: 64
drop_last: False drop_last: False
shuffle: True shuffle: True
loader: loader:
num_workers: 6 num_workers: 6
use_shared_memory: True use_shared_memory: True
Eval: Eval:
# TOTO: modify to the latest trainer # TOTO: modify to the latest trainer
dataset: dataset:
name: ImageNetDataset name: "ImageNetDataset"
image_root: "./dataset/ILSVRC2012/" image_root: "./dataset/ILSVRC2012/"
cls_label_path: "./dataset/ILSVRC2012/val_list.txt" cls_label_path: "./dataset/ILSVRC2012/val_list.txt"
transform_ops: transform_ops:
- ResizeImage: - ResizeImage:
resize_short: 256 resize_short: 256
- CropImage: - CropImage:
size: 224 size: 224
- NormalizeImage: - NormalizeImage:
scale: 0.00392157 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
sampler: sampler:
name: DistributedBatchSampler name: "DistributedBatchSampler"
batch_size: 64 batch_size: 64
drop_last: False drop_last: False
shuffle: False shuffle: False
loader: loader:
num_workers: 6 num_workers: 6
use_shared_memory: True use_shared_memory: True
Infer: Infer:
infer_imgs: "docs/images/whl/demo.jpg" infer_imgs: "docs/images/whl/demo.jpg"
batch_size: 10 batch_size: 10
transforms: transforms:
- DecodeImage: - DecodeImage:
to_rgb: True to_rgb: True
channel_first: False channel_first: False
- ResizeImage: - ResizeImage:
resize_short: 256 resize_short: 256
- CropImage: - CropImage:
size: 224 size: 224
- NormalizeImage: - NormalizeImage:
scale: 1.0/255.0 scale: 1.0/255.0
mean: [0.485, 0.456, 0.406] mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225] std: [0.229, 0.224, 0.225]
order: '' order: ''
- ToCHWImage: - ToCHWImage:
PostProcess: PostProcess:
name: Topk name: "Topk"
topk: 5 topk: 5
class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt" class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt"
Metric: Metric:
Train: Train:
- TopkAcc: Eval:
topk: [1, 5]
Eval:
- TopkAcc: - TopkAcc:
topk: [1, 5] topk: [1, 5]
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册