Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
480e40eb
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
480e40eb
编写于
6月 23, 2022
作者:
H
HydrogenSulfate
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add main model KL transformation chain
上级
1fe19cb7
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
621 addition
and
45 deletion
+621
-45
test_tipc/config/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5_train_ptq_infer_python.txt
...eneralRecognition_PPLCNet_x2_5_train_ptq_infer_python.txt
+54
-0
test_tipc/config/MobileNetV3/MobileNetV3_large_x1_0_train_ptq_infer_python.txt
...leNetV3/MobileNetV3_large_x1_0_train_ptq_infer_python.txt
+60
-0
test_tipc/config/PPHGNet/PPHGNet_small_train_ptq_infer_python.txt
...c/config/PPHGNet/PPHGNet_small_train_ptq_infer_python.txt
+53
-0
test_tipc/config/PPLCNet/PPLCNet_x1_0_train_ptq_infer_python.txt
...pc/config/PPLCNet/PPLCNet_x1_0_train_ptq_infer_python.txt
+53
-0
test_tipc/config/PPLCNetV2/PPLCNetV2_base_train_ptq_infer_python.txt
...onfig/PPLCNetV2/PPLCNetV2_base_train_ptq_infer_python.txt
+53
-0
test_tipc/config/ResNet/ResNet50_vd_train_ptq_infer_python.txt
...tipc/config/ResNet/ResNet50_vd_train_ptq_infer_python.txt
+60
-0
test_tipc/config/SwinTransformer/SwinTransformer_tiny_patch4_window7_224_train_ptq_infer_python.txt
...former_tiny_patch4_window7_224_train_ptq_infer_python.txt
+60
-0
test_tipc/prepare.sh
test_tipc/prepare.sh
+6
-4
test_tipc/test_ptq_inference_python.sh
test_tipc/test_ptq_inference_python.sh
+180
-0
test_tipc/test_train_inference_python.sh
test_tipc/test_train_inference_python.sh
+42
-41
未找到文件。
test_tipc/config/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5_train_ptq_infer_python.txt
0 → 100644
浏览文件 @
480e40eb
===========================train_params===========================
model_name:GeneralRecognition_PPLCNet_x2_5
python:python3.7
gpu_list:0
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=100
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:pact_train
norm_train:null
pact_train:tools/train.py -c ppcls/configs/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:null
quant_export:tools/export_model.py -c ppcls/configs/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5.yaml
fpgm_export:null
distill_export:null
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5.yaml -o Global.save_inference_dir=./deploy/models/general_PPLCNet_x2_5_lite_v1.0_kl_quant_infer
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/general_PPLCNet_x2_5_lite_v1.0_infer.tar
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_rec.py -c configs/inference_rec.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.rec_inference_model_dir:../inference
-o Global.infer_imgs:../dataset/Aliproduct/demo_test/
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
\ No newline at end of file
test_tipc/config/MobileNetV3/MobileNetV3_large_x1_0_train_ptq_infer_python.txt
0 → 100644
浏览文件 @
480e40eb
===========================train_params===========================
model_name:MobileNetV3_large_x1_0
python:python3.7
gpu_list:0
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:tools/train.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_quantization.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
fpgm_train:tools/train.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_prune.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
distill_train:null
to_static_train:-o Global.to_static=True
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml
quant_export:tools/export_model.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_quantization.yaml
fpgm_export:tools/export_model.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_prune.yaml
distill_export:null
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml -o Global.save_inference_dir=./deploy/models/MobileNetV3_large_x1_0_kl_quant_infer
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_0_infer.tar
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
null:null
===========================train_benchmark_params==========================
batch_size:256|640
fp_items:fp32
epoch:1
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
\ No newline at end of file
test_tipc/config/PPHGNet/PPHGNet_small_train_ptq_infer_python.txt
0 → 100644
浏览文件 @
480e40eb
===========================train_params===========================
model_name:PPHGNet_small
python:python3.7
gpu_list:0
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml -o Global.save_inference_dir=./deploy/models/PPHGNet_small_kl_quant_infer
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_tiny_infer.tar
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml -o PreProcess.transform_ops.0.ResizeImage.resize_short=236
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
test_tipc/config/PPLCNet/PPLCNet_x1_0_train_ptq_infer_python.txt
0 → 100644
浏览文件 @
480e40eb
===========================train_params===========================
model_name:PPLCNet_x1_0
python:python3.7
gpu_list:0
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x1_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x1_0.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x1_0.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x1_0.yaml -o Global.save_inference_dir=./deploy/models/PPLCNet_x1_0_kl_quant_infer
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x1_0_infer.tar
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
\ No newline at end of file
test_tipc/config/PPLCNetV2/PPLCNetV2_base_train_ptq_infer_python.txt
0 → 100644
浏览文件 @
480e40eb
===========================train_params===========================
model_name:PPLCNetV2_base
python:python3.7
gpu_list:0
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.first_bs:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNetV2/PPLCNetV2_base.yaml -o Global.seed=1234 -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNetV2/PPLCNetV2_base.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/PPLCNetV2/PPLCNetV2_base.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/PPLCNetV2/PPLCNetV2_base.yaml -o Global.save_inference_dir=./deploy/models/PPLCNetV2_base_kl_quant_infer
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNetV2_base_infer.tar
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
test_tipc/config/ResNet/ResNet50_vd_train_ptq_infer_python.txt
0 → 100644
浏览文件 @
480e40eb
===========================train_params===========================
model_name:ResNet50_vd
python:python3.7
gpu_list:0
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=200
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
to_static_train:-o Global.to_static=True
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml -o Global.save_inference_dir=./deploy/models/ResNet50_vd_kl_quant_infer
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
null:null
===========================train_benchmark_params==========================
batch_size:128
fp_items:fp32
epoch:1
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
\ No newline at end of file
test_tipc/config/SwinTransformer/SwinTransformer_tiny_patch4_window7_224_train_ptq_infer_python.txt
0 → 100644
浏览文件 @
480e40eb
===========================train_params===========================
model_name:SwinTransformer_tiny_patch4_window7_224
python:python3.7
gpu_list:0
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/SwinTransformer/SwinTransformer_tiny_patch4_window7_224.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/SwinTransformer/SwinTransformer_tiny_patch4_window7_224.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/SwinTransformer/SwinTransformer_tiny_patch4_window7_224.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/SwinTransformer/SwinTransformer_tiny_patch4_window7_224.yaml -o Global.save_inference_dir=./deploy/models/SwinTransformer_tiny_patch4_window7_224_kl_quant_infer
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_tiny_patch4_window7_224_infer.tar
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
null:null
===========================train_benchmark_params==========================
batch_size:64|104
fp_items:fp32
epoch:1
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
\ No newline at end of file
test_tipc/prepare.sh
浏览文件 @
480e40eb
...
...
@@ -136,7 +136,7 @@ model_name=$(func_parser_value "${lines[1]}")
model_url_value
=
$(
func_parser_value
"
${
lines
[35]
}
"
)
model_url_key
=
$(
func_parser_key
"
${
lines
[35]
}
"
)
if
[[
$
FILENAME
==
*
GeneralRecognition
*
]]
;
then
if
[[
$
model_name
==
*
ShiTu
*
]]
;
then
cd
dataset
rm
-rf
Aliproduct
rm
-rf
train_reg_all_data.txt
...
...
@@ -184,9 +184,11 @@ elif [[ ${MODE} = "whole_infer" ]] || [[ ${MODE} = "klquant_whole_infer" ]]; the
cd
../../
# download inference or pretrained model
eval
"wget -nc
$model_url_value
"
if
[[
$model_url_key
==
*
inference
*
]]
;
then
rm
-rf
inference
tar
xf
"
${
model_name
}
_infer.tar"
if
[[
${
model_url_value
}
=
~
".tar"
]]
;
then
tar_name
=
$(
func_get_url_file_name
"
${
model_url_value
}
"
)
echo
$tar_name
rm
-rf
{
tar_name
}
tar
xf
${
tar_name
}
fi
if
[[
$model_name
==
"SwinTransformer_large_patch4_window7_224"
||
$model_name
==
"SwinTransformer_large_patch4_window12_384"
]]
;
then
cmd
=
"mv
${
model_name
}
_22kto1k_pretrained.pdparams
${
model_name
}
_pretrained.pdparams"
...
...
test_tipc/test_ptq_inference_python.sh
0 → 100644
浏览文件 @
480e40eb
#!/bin/bash
FILENAME
=
$1
source
test_tipc/common_func.sh
# MODE be one of ['lite_train_lite_infer' 'lite_train_whole_infer' 'whole_train_whole_infer', 'whole_infer', 'klquant_whole_infer']
MODE
=
$2
dataline
=
$(
cat
${
FILENAME
}
)
# parser params
IFS
=
$'
\n
'
lines
=(
${
dataline
}
)
# The training params
model_name
=
$(
func_parser_value
"
${
lines
[1]
}
"
)
python
=
$(
func_parser_value
"
${
lines
[2]
}
"
)
gpu_list
=
$(
func_parser_value
"
${
lines
[3]
}
"
)
train_use_gpu_key
=
$(
func_parser_key
"
${
lines
[4]
}
"
)
train_use_gpu_value
=
$(
func_parser_value
"
${
lines
[4]
}
"
)
autocast_list
=
$(
func_parser_value
"
${
lines
[5]
}
"
)
autocast_key
=
$(
func_parser_key
"
${
lines
[5]
}
"
)
epoch_key
=
$(
func_parser_key
"
${
lines
[6]
}
"
)
epoch_num
=
$(
func_parser_params
"
${
lines
[6]
}
"
)
save_model_key
=
$(
func_parser_key
"
${
lines
[7]
}
"
)
train_batch_key
=
$(
func_parser_key
"
${
lines
[8]
}
"
)
train_batch_value
=
$(
func_parser_value
"
${
lines
[8]
}
"
)
pretrain_model_key
=
$(
func_parser_key
"
${
lines
[9]
}
"
)
pretrain_model_value
=
$(
func_parser_value
"
${
lines
[9]
}
"
)
train_model_name
=
$(
func_parser_value
"
${
lines
[10]
}
"
)
train_infer_img_dir
=
$(
func_parser_value
"
${
lines
[11]
}
"
)
train_param_key1
=
$(
func_parser_key
"
${
lines
[12]
}
"
)
train_param_value1
=
$(
func_parser_value
"
${
lines
[12]
}
"
)
trainer_list
=
$(
func_parser_value
"
${
lines
[14]
}
"
)
trainer_norm
=
$(
func_parser_key
"
${
lines
[15]
}
"
)
norm_trainer
=
$(
func_parser_value
"
${
lines
[15]
}
"
)
pact_key
=
$(
func_parser_key
"
${
lines
[16]
}
"
)
pact_trainer
=
$(
func_parser_value
"
${
lines
[16]
}
"
)
fpgm_key
=
$(
func_parser_key
"
${
lines
[17]
}
"
)
fpgm_trainer
=
$(
func_parser_value
"
${
lines
[17]
}
"
)
distill_key
=
$(
func_parser_key
"
${
lines
[18]
}
"
)
distill_trainer
=
$(
func_parser_value
"
${
lines
[18]
}
"
)
to_static_key
=
$(
func_parser_key
"
${
lines
[19]
}
"
)
to_static_trainer
=
$(
func_parser_value
"
${
lines
[19]
}
"
)
trainer_key2
=
$(
func_parser_key
"
${
lines
[20]
}
"
)
trainer_value2
=
$(
func_parser_value
"
${
lines
[20]
}
"
)
eval_py
=
$(
func_parser_value
"
${
lines
[23]
}
"
)
eval_key1
=
$(
func_parser_key
"
${
lines
[24]
}
"
)
eval_value1
=
$(
func_parser_value
"
${
lines
[24]
}
"
)
save_infer_key
=
$(
func_parser_key
"
${
lines
[27]
}
"
)
export_weight
=
$(
func_parser_key
"
${
lines
[28]
}
"
)
norm_export
=
$(
func_parser_value
"
${
lines
[29]
}
"
)
pact_export
=
$(
func_parser_value
"
${
lines
[30]
}
"
)
fpgm_export
=
$(
func_parser_value
"
${
lines
[31]
}
"
)
distill_export
=
$(
func_parser_value
"
${
lines
[32]
}
"
)
kl_quant_cmd_key
=
$(
func_parser_key
"
${
lines
[33]
}
"
)
kl_quant_cmd_value
=
$(
func_parser_value
"
${
lines
[33]
}
"
)
export_key2
=
$(
func_parser_key
"
${
lines
[34]
}
"
)
export_value2
=
$(
func_parser_value
"
${
lines
[34]
}
"
)
# parser inference model
infer_model_dir_list
=
$(
func_parser_value
"
${
lines
[36]
}
"
)
infer_export_flag
=
$(
func_parser_value
"
${
lines
[37]
}
"
)
infer_is_quant
=
$(
func_parser_value
"
${
lines
[38]
}
"
)
# parser inference
inference_py
=
$(
func_parser_value
"
${
lines
[39]
}
"
)
use_gpu_key
=
$(
func_parser_key
"
${
lines
[40]
}
"
)
use_gpu_list
=
$(
func_parser_value
"
${
lines
[40]
}
"
)
use_mkldnn_key
=
$(
func_parser_key
"
${
lines
[41]
}
"
)
use_mkldnn_list
=
$(
func_parser_value
"
${
lines
[41]
}
"
)
cpu_threads_key
=
$(
func_parser_key
"
${
lines
[42]
}
"
)
cpu_threads_list
=
$(
func_parser_value
"
${
lines
[42]
}
"
)
batch_size_key
=
$(
func_parser_key
"
${
lines
[43]
}
"
)
batch_size_list
=
$(
func_parser_value
"
${
lines
[43]
}
"
)
use_trt_key
=
$(
func_parser_key
"
${
lines
[44]
}
"
)
use_trt_list
=
$(
func_parser_value
"
${
lines
[44]
}
"
)
precision_key
=
$(
func_parser_key
"
${
lines
[45]
}
"
)
precision_list
=
$(
func_parser_value
"
${
lines
[45]
}
"
)
infer_model_key
=
$(
func_parser_key
"
${
lines
[46]
}
"
)
image_dir_key
=
$(
func_parser_key
"
${
lines
[47]
}
"
)
infer_img_dir
=
$(
func_parser_value
"
${
lines
[47]
}
"
)
save_log_key
=
$(
func_parser_key
"
${
lines
[48]
}
"
)
benchmark_key
=
$(
func_parser_key
"
${
lines
[49]
}
"
)
benchmark_value
=
$(
func_parser_value
"
${
lines
[49]
}
"
)
infer_key1
=
$(
func_parser_key
"
${
lines
[50]
}
"
)
infer_value1
=
$(
func_parser_value
"
${
lines
[50]
}
"
)
if
[
!
$epoch_num
]
;
then
epoch_num
=
2
fi
if
[[
$MODE
=
'benchmark_train'
]]
;
then
epoch_num
=
1
fi
LOG_PATH
=
"./test_tipc/output/
${
model_name
}
/
${
MODE
}
"
mkdir
-p
${
LOG_PATH
}
status_log
=
"
${
LOG_PATH
}
/results_python.log"
function
func_inference
()
{
IFS
=
'|'
_python
=
$1
_script
=
$2
_model_dir
=
$3
_log_path
=
$4
_img_dir
=
$5
_flag_quant
=
$6
# inference
for
use_gpu
in
${
use_gpu_list
[*]
}
;
do
if
[
${
use_gpu
}
=
"False"
]
||
[
${
use_gpu
}
=
"cpu"
]
;
then
for
use_mkldnn
in
${
use_mkldnn_list
[*]
}
;
do
for
threads
in
${
cpu_threads_list
[*]
}
;
do
for
batch_size
in
${
batch_size_list
[*]
}
;
do
_save_log_path
=
"
${
_log_path
}
/infer_cpu_usemkldnn_
${
use_mkldnn
}
_threads_
${
threads
}
_batchsize_
${
batch_size
}
.log"
set_infer_data
=
$(
func_set_params
"
${
image_dir_key
}
"
"
${
_img_dir
}
"
)
set_benchmark
=
$(
func_set_params
"
${
benchmark_key
}
"
"
${
benchmark_value
}
"
)
set_batchsize
=
$(
func_set_params
"
${
batch_size_key
}
"
"
${
batch_size
}
"
)
set_cpu_threads
=
$(
func_set_params
"
${
cpu_threads_key
}
"
"
${
threads
}
"
)
set_model_dir
=
$(
func_set_params
"
${
infer_model_key
}
"
"
${
_model_dir
}
"
)
set_infer_params1
=
$(
func_set_params
"
${
infer_key1
}
"
"
${
infer_value1
}
"
)
command
=
"
${
_python
}
${
_script
}
${
use_gpu_key
}
=
${
use_gpu
}
${
use_mkldnn_key
}
=
${
use_mkldnn
}
${
set_cpu_threads
}
${
set_model_dir
}
${
set_batchsize
}
${
set_infer_data
}
${
set_benchmark
}
${
set_infer_params1
}
>
${
_save_log_path
}
2>&1 "
eval
$command
last_status
=
${
PIPESTATUS
[0]
}
eval
"cat
${
_save_log_path
}
"
status_check
$last_status
"
${
command
}
"
"../
${
status_log
}
"
"
${
model_name
}
"
done
done
done
elif
[
${
use_gpu
}
=
"True"
]
||
[
${
use_gpu
}
=
"gpu"
]
;
then
for
use_trt
in
${
use_trt_list
[*]
}
;
do
for
precision
in
${
precision_list
[*]
}
;
do
if
[
${
precision
}
=
"True"
]
&&
[
${
use_trt
}
=
"False"
]
;
then
continue
fi
# if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
# continue
# fi
for
batch_size
in
${
batch_size_list
[*]
}
;
do
_save_log_path
=
"
${
_log_path
}
/infer_gpu_usetrt_
${
use_trt
}
_precision_
${
precision
}
_batchsize_
${
batch_size
}
.log"
set_infer_data
=
$(
func_set_params
"
${
image_dir_key
}
"
"
${
_img_dir
}
"
)
set_benchmark
=
$(
func_set_params
"
${
benchmark_key
}
"
"
${
benchmark_value
}
"
)
set_batchsize
=
$(
func_set_params
"
${
batch_size_key
}
"
"
${
batch_size
}
"
)
set_tensorrt
=
$(
func_set_params
"
${
use_trt_key
}
"
"
${
use_trt
}
"
)
set_precision
=
$(
func_set_params
"
${
precision_key
}
"
"
${
precision
}
"
)
set_model_dir
=
$(
func_set_params
"
${
infer_model_key
}
"
"
${
_model_dir
}
"
)
command
=
"
${
_python
}
${
_script
}
${
use_gpu_key
}
=
${
use_gpu
}
${
set_tensorrt
}
${
set_precision
}
${
set_model_dir
}
${
set_batchsize
}
${
set_infer_data
}
${
set_benchmark
}
>
${
_save_log_path
}
2>&1 "
eval
$command
last_status
=
${
PIPESTATUS
[0]
}
eval
"cat
${
_save_log_path
}
"
status_check
$last_status
"
${
command
}
"
"../
${
status_log
}
"
"
${
model_name
}
"
done
done
done
else
echo
"Does not support hardware other than CPU and GPU Currently!"
fi
done
}
if
[[
${
MODE
}
=
"whole_infer"
]]
;
then
GPUID
=
$3
if
[
${#
GPUID
}
-le
0
]
;
then
env
=
"export CUDA_VISIBLE_DEVICES=0"
else
env
=
"export CUDA_VISIBLE_DEVICES=
${
GPUID
}
"
fi
# set CUDA_VISIBLE_DEVICES
eval
$env
export
Count
=
0
cd
deploy
for
infer_model
in
${
infer_model_dir_list
[*]
}
;
do
#run inference
is_quant
=
${
infer_quant_flag
[Count]
}
echo
"is_quant:
${
is_quant
}
"
func_inference
"
${
python
}
"
"
${
inference_py
}
"
"
${
infer_model
}
"
"../
${
LOG_PATH
}
"
"
${
infer_img_dir
}
"
${
is_quant
}
Count
=
$((
$Count
+
1
))
done
cd
..
test_tipc/test_train_inference_python.sh
浏览文件 @
480e40eb
...
...
@@ -161,51 +161,52 @@ function func_inference(){
done
}
if
[[
${
MODE
}
=
"whole_infer"
]]
||
[[
${
MODE
}
=
"klquant_whole_infer"
]]
;
then
IFS
=
"|"
infer_export_flag
=(
${
infer_export_flag
}
)
if
[
${
infer_export_flag
}
!=
"null"
]
&&
[
${
infer_export_flag
}
!=
"False"
]
;
then
rm
-rf
${
infer_model_dir_list
/..\//
}
export_cmd
=
"
${
python
}
${
norm_export
}
-o Global.pretrained_model=
${
model_name
}
_pretrained -o Global.save_inference_dir=
${
infer_model_dir_list
/..\//
}
"
eval
$export_cmd
fi
fi
#
if [[ ${MODE} = "whole_infer" ]] || [[ ${MODE} = "klquant_whole_infer" ]]; then
#
IFS="|"
#
infer_export_flag=(${infer_export_flag})
# if [ ${infer_export_flag} != "null" ]
&& [ ${infer_export_flag} != "False" ]; then
#
rm -rf ${infer_model_dir_list/..\//}
#
export_cmd="${python} ${norm_export} -o Global.pretrained_model=${model_name}_pretrained -o Global.save_inference_dir=${infer_model_dir_list/..\//}"
#
eval $export_cmd
#
fi
#
fi
if
[[
${
MODE
}
=
"whole_infer"
]]
;
then
GPUID
=
$3
if
[
${#
GPUID
}
-le
0
]
;
then
env
=
" "
else
env
=
"export CUDA_VISIBLE_DEVICES=
${
GPUID
}
"
fi
# set CUDA_VISIBLE_DEVICES
eval
$env
export
Count
=
0
cd
deploy
for
infer_model
in
${
infer_model_dir_list
[*]
}
;
do
#run inference
is_quant
=
${
infer_quant_flag
[Count]
}
echo
"is_quant:
${
is_quant
}
"
func_inference
"
${
python
}
"
"
${
inference_py
}
"
"
${
infer_model
}
"
"../
${
LOG_PATH
}
"
"
${
infer_img_dir
}
"
${
is_quant
}
Count
=
$((
$Count
+
1
))
done
cd
..
#
if [[ ${MODE} = "whole_infer" ]]; then
#
GPUID=$3
# if [ ${#GPUID} -le 0 ];
then
#
env=" "
#
else
#
env="export CUDA_VISIBLE_DEVICES=${GPUID}"
#
fi
#
# set CUDA_VISIBLE_DEVICES
#
eval $env
#
export Count=0
#
cd deploy
#
for infer_model in ${infer_model_dir_list[*]}; do
#
#run inference
#
is_quant=${infer_quant_flag[Count]}
#
echo "is_quant: ${is_quant}"
#
func_inference "${python}" "${inference_py}" "${infer_model}" "../${LOG_PATH}" "${infer_img_dir}" ${is_quant}
#
Count=$(($Count + 1))
#
done
#
cd ..
elif
[[
${
MODE
}
=
"klquant_
whole_infer"
]]
;
then
if
[[
${
MODE
}
=
"
whole_infer"
]]
;
then
# for kl_quant
if
[
${
kl_quant_cmd_value
}
!=
"null"
]
&&
[
${
kl_quant_cmd_value
}
!=
"False"
]
;
then
echo
"kl_quant"
command
=
"
${
python
}
${
kl_quant_cmd_value
}
"
eval
$command
last_status
=
${
PIPESTATUS
[0]
}
status_check
$last_status
"
${
command
}
"
"
${
status_log
}
"
"
${
model_name
}
"
cd
inference/quant_post_static_model
ln
-s
__model__ inference.pdmodel
ln
-s
__params__ inference.pdiparams
cd
../../deploy
is_quant
=
True
func_inference
"
${
python
}
"
"
${
inference_py
}
"
"
${
infer_model_dir_list
}
/quant_post_static_model"
"../
${
LOG_PATH
}
"
"
${
infer_img_dir
}
"
${
is_quant
}
cd
..
echo
"kl_quant"
command
=
"
${
python
}
${
kl_quant_cmd_value
}
"
echo
${
command
}
eval
$command
last_status
=
${
PIPESTATUS
[0]
}
status_check
$last_status
"
${
command
}
"
"
${
status_log
}
"
"
${
model_name
}
"
# cd inference/quant_post_static_model
# ln -s __model__ inference.pdmodel
# ln -s __params__ inference.pdiparams
# cd ../../deploy
# is_quant=True
# func_inference "${python}" "${inference_py}" "${infer_model_dir_list}/quant_post_static_model" "../${LOG_PATH}" "${infer_img_dir}" ${is_quant}
# cd ..
fi
else
IFS
=
"|"
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录