提交 43d1eba9 编写于 作者: H HydrogenSulfate

Merge branch 'develop' into add_re_ranking

......@@ -8,7 +8,7 @@ Global:
image_shape: [3, 640, 640]
threshold: 0.2
max_det_results: 5
labe_list:
label_list:
- foreground
use_gpu: True
......
......@@ -5,7 +5,7 @@ Global:
image_shape: [3, 640, 640]
threshold: 0.2
max_det_results: 1
labe_list:
label_list:
- foreground
# inference engine config
......
......@@ -8,7 +8,7 @@ Global:
image_shape: [3, 640, 640]
threshold: 0.2
max_det_results: 5
labe_list:
label_list:
- foreground
use_gpu: True
......
......@@ -8,7 +8,7 @@ Global:
image_shape: [3, 640, 640]
threshold: 0.2
max_det_results: 5
labe_list:
label_list:
- foreground
use_gpu: True
......
......@@ -8,7 +8,7 @@ Global:
image_shape: [3, 640, 640]
threshold: 0.2
max_det_results: 5
labe_list:
label_list:
- foreground
use_gpu: True
......
......@@ -8,7 +8,7 @@ Global:
image_shape: [3, 640, 640]
threshold: 0.2
max_det_results: 5
labe_list:
label_list:
- foreground
use_gpu: True
......
......@@ -8,7 +8,7 @@ Global:
image_shape: [3, 640, 640]
threshold: 0.2
max_det_results: 5
labe_list:
label_list:
- foreground
# inference engine config
......
......@@ -8,7 +8,7 @@ Global:
image_shape: [3, 640, 640]
threshold: 0.2
max_det_results: 5
labe_list:
label_list:
- foreground
use_gpu: True
......
......@@ -33,106 +33,106 @@ using namespace paddle_infer;
namespace Detection {
// Object Detection Result
struct ObjectResult {
// Rectangle coordinates of detected object: left, right, top, down
std::vector<int> rect;
// Class id of detected object
int class_id;
// Confidence of detected object
float confidence;
};
struct ObjectResult {
// Rectangle coordinates of detected object: left, right, top, down
std::vector<int> rect;
// Class id of detected object
int class_id;
// Confidence of detected object
float confidence;
};
// Generate visualization colormap for each class
std::vector<int> GenerateColorMap(int num_class);
std::vector<int> GenerateColorMap(int num_class);
// Visualiztion Detection Result
cv::Mat VisualizeResult(const cv::Mat &img,
const std::vector <ObjectResult> &results,
const std::vector <std::string> &lables,
const std::vector<int> &colormap, const bool is_rbox);
class ObjectDetector {
public:
explicit ObjectDetector(const YAML::Node &config_file) {
this->use_gpu_ = config_file["Global"]["use_gpu"].as<bool>();
if (config_file["Global"]["gpu_id"].IsDefined())
this->gpu_id_ = config_file["Global"]["gpu_id"].as<int>();
this->gpu_mem_ = config_file["Global"]["gpu_mem"].as<int>();
this->cpu_math_library_num_threads_ =
config_file["Global"]["cpu_num_threads"].as<int>();
this->use_mkldnn_ = config_file["Global"]["enable_mkldnn"].as<bool>();
this->use_tensorrt_ = config_file["Global"]["use_tensorrt"].as<bool>();
this->use_fp16_ = config_file["Global"]["use_fp16"].as<bool>();
this->model_dir_ =
config_file["Global"]["det_inference_model_dir"].as<std::string>();
this->threshold_ = config_file["Global"]["threshold"].as<float>();
this->max_det_results_ = config_file["Global"]["max_det_results"].as<int>();
this->image_shape_ =
config_file["Global"]["image_shape"].as < std::vector < int >> ();
this->label_list_ =
config_file["Global"]["labe_list"].as < std::vector < std::string >> ();
this->ir_optim_ = config_file["Global"]["ir_optim"].as<bool>();
this->batch_size_ = config_file["Global"]["batch_size"].as<int>();
preprocessor_.Init(config_file["DetPreProcess"]["transform_ops"]);
LoadModel(model_dir_, batch_size_, run_mode);
}
// Load Paddle inference model
void LoadModel(const std::string &model_dir, const int batch_size = 1,
const std::string &run_mode = "fluid");
// Run predictor
void Predict(const std::vector <cv::Mat> imgs, const int warmup = 0,
const int repeats = 1,
std::vector <ObjectResult> *result = nullptr,
std::vector<int> *bbox_num = nullptr,
std::vector<double> *times = nullptr);
const std::vector <std::string> &GetLabelList() const {
return this->label_list_;
}
const float &GetThreshold() const { return this->threshold_; }
private:
bool use_gpu_ = true;
int gpu_id_ = 0;
int gpu_mem_ = 800;
int cpu_math_library_num_threads_ = 6;
std::string run_mode = "fluid";
bool use_mkldnn_ = false;
bool use_tensorrt_ = false;
bool batch_size_ = 1;
bool use_fp16_ = false;
std::string model_dir_;
float threshold_ = 0.5;
float max_det_results_ = 5;
std::vector<int> image_shape_ = {3, 640, 640};
std::vector <std::string> label_list_;
bool ir_optim_ = true;
bool det_permute_ = true;
bool det_postprocess_ = true;
int min_subgraph_size_ = 30;
bool use_dynamic_shape_ = false;
int trt_min_shape_ = 1;
int trt_max_shape_ = 1280;
int trt_opt_shape_ = 640;
bool trt_calib_mode_ = false;
// Preprocess image and copy data to input buffer
void Preprocess(const cv::Mat &image_mat);
// Postprocess result
void Postprocess(const std::vector <cv::Mat> mats,
std::vector <ObjectResult> *result, std::vector<int> bbox_num,
bool is_rbox);
std::shared_ptr <Predictor> predictor_;
Preprocessor preprocessor_;
ImageBlob inputs_;
std::vector<float> output_data_;
std::vector<int> out_bbox_num_data_;
};
cv::Mat VisualizeResult(const cv::Mat &img,
const std::vector<ObjectResult> &results,
const std::vector<std::string> &lables,
const std::vector<int> &colormap, const bool is_rbox);
class ObjectDetector {
public:
explicit ObjectDetector(const YAML::Node &config_file) {
this->use_gpu_ = config_file["Global"]["use_gpu"].as<bool>();
if (config_file["Global"]["gpu_id"].IsDefined())
this->gpu_id_ = config_file["Global"]["gpu_id"].as<int>();
this->gpu_mem_ = config_file["Global"]["gpu_mem"].as<int>();
this->cpu_math_library_num_threads_ =
config_file["Global"]["cpu_num_threads"].as<int>();
this->use_mkldnn_ = config_file["Global"]["enable_mkldnn"].as<bool>();
this->use_tensorrt_ = config_file["Global"]["use_tensorrt"].as<bool>();
this->use_fp16_ = config_file["Global"]["use_fp16"].as<bool>();
this->model_dir_ =
config_file["Global"]["det_inference_model_dir"].as<std::string>();
this->threshold_ = config_file["Global"]["threshold"].as<float>();
this->max_det_results_ = config_file["Global"]["max_det_results"].as<int>();
this->image_shape_ =
config_file["Global"]["image_shape"].as<std::vector<int>>();
this->label_list_ =
config_file["Global"]["label_list"].as<std::vector<std::string>>();
this->ir_optim_ = config_file["Global"]["ir_optim"].as<bool>();
this->batch_size_ = config_file["Global"]["batch_size"].as<int>();
preprocessor_.Init(config_file["DetPreProcess"]["transform_ops"]);
LoadModel(model_dir_, batch_size_, run_mode);
}
// Load Paddle inference model
void LoadModel(const std::string &model_dir, const int batch_size = 1,
const std::string &run_mode = "fluid");
// Run predictor
void Predict(const std::vector<cv::Mat> imgs, const int warmup = 0,
const int repeats = 1,
std::vector<ObjectResult> *result = nullptr,
std::vector<int> *bbox_num = nullptr,
std::vector<double> *times = nullptr);
const std::vector<std::string> &GetLabelList() const {
return this->label_list_;
}
const float &GetThreshold() const { return this->threshold_; }
private:
bool use_gpu_ = true;
int gpu_id_ = 0;
int gpu_mem_ = 800;
int cpu_math_library_num_threads_ = 6;
std::string run_mode = "fluid";
bool use_mkldnn_ = false;
bool use_tensorrt_ = false;
bool batch_size_ = 1;
bool use_fp16_ = false;
std::string model_dir_;
float threshold_ = 0.5;
float max_det_results_ = 5;
std::vector<int> image_shape_ = {3, 640, 640};
std::vector<std::string> label_list_;
bool ir_optim_ = true;
bool det_permute_ = true;
bool det_postprocess_ = true;
int min_subgraph_size_ = 30;
bool use_dynamic_shape_ = false;
int trt_min_shape_ = 1;
int trt_max_shape_ = 1280;
int trt_opt_shape_ = 640;
bool trt_calib_mode_ = false;
// Preprocess image and copy data to input buffer
void Preprocess(const cv::Mat &image_mat);
// Postprocess result
void Postprocess(const std::vector<cv::Mat> mats,
std::vector<ObjectResult> *result, std::vector<int> bbox_num,
bool is_rbox);
std::shared_ptr<Predictor> predictor_;
Preprocessor preprocessor_;
ImageBlob inputs_;
std::vector<float> output_data_;
std::vector<int> out_bbox_num_data_;
};
} // namespace Detection
......@@ -95,7 +95,7 @@ def main():
config_json["Global"]["det_model_path"] = args.det_model_path
config_json["Global"]["rec_model_path"] = args.rec_model_path
config_json["Global"]["rec_label_path"] = args.rec_label_path
config_json["Global"]["label_list"] = config_yaml["Global"]["labe_list"]
config_json["Global"]["label_list"] = config_yaml["Global"]["label_list"]
config_json["Global"]["rec_nms_thresold"] = config_yaml["Global"][
"rec_nms_thresold"]
config_json["Global"]["max_det_results"] = config_yaml["Global"][
......
......@@ -128,13 +128,10 @@ class DetPredictor(Predictor):
results = []
if reduce(lambda x, y: x * y, np_boxes.shape) < 6:
print('[WARNNING] No object detected.')
results = np.array([])
else:
results = np_boxes
results = self.parse_det_results(results,
self.config["Global"]["threshold"],
self.config["Global"]["labe_list"])
results = self.parse_det_results(
np_boxes, self.config["Global"]["threshold"],
self.config["Global"]["label_list"])
return results
......
......@@ -10,7 +10,7 @@
- [2.1 服务器端知识蒸馏模型](#2.1)
- [2.2 移动端知识蒸馏模型](#2.2)
- [2.3 Intel CPU 端知识蒸馏模型](#2.3)
- [3. PP-LCNet 系列](#3)
- [3. PP-LCNet & PP-LCNetV2 系列](#3)
- [4. ResNet 系列](#4)
- [5. 移动端系列](#5)
- [6. SEResNeXt 与 Res2Net 系列](#6)
......@@ -106,9 +106,9 @@
<a name="3"></a>
## 3. PP-LCNet 系列 <sup>[[28](#ref28)]</sup>
## 3. PP-LCNet & PP-LCNetV2 系列 <sup>[[28](#ref28)]</sup>
PP-LCNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[PP-LCNet 系列模型文档](../models/PP-LCNet.md)
PP-LCNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[PP-LCNet 系列模型文档](../models/PP-LCNet.md)[PP-LCNetV2 系列模型文档](../models/PP-LCNetV2.md)
| 模型 | Top-1 Acc | Top-5 Acc | Intel-Xeon-Gold-6148 time(ms)<br>bs=1 | FLOPs(M) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|:--:|:--:|:--:|:--:|----|----|----|:--:|
......@@ -121,6 +121,10 @@ PP-LCNet 系列模型的精度、速度指标如下表所示,更多关于该
| PPLCNet_x2_0 |0.7518 | 0.9227 | 20.1667 | 590 | 6.54 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x2_0_infer.tar) |
| PPLCNet_x2_5 |0.7660 | 0.9300 | 29.595 | 906 | 9.04 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x2_5_infer.tar) |
| 模型 | Top-1 Acc | Top-5 Acc | Intel-Xeon-Gold-6271C<br>bs=1<br>OpenVINO 2021.4.2<br>time(ms) | FLOPs(M) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|:--:|:--:|:--:|:--:|----|----|----|:--:|
| PPLCNetV2_base | 77.04 | 93.27 | 4.32 | 604 | 6.6 | https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNetV2_base_pretrained.pdparams | https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNetV2_base_infer.tar |
<a name="4"></a>
## 4. ResNet 系列 <sup>[[1](#ref1)]</sup>
......
# PP-HGNet 系列
---
## 目录
* [1. 概述](#1)
* [2. 精度、FLOPs 和参数量](#2)
<a name='1'></a>
## 1. 概述
PP-HGNet是百度自研的一个在 GPU 端上高性能的网络,该网络在 VOVNet 的基础上融合了 ResNet_vd、PPLCNet 的优点,使用了可学习的下采样层,组合成了一个在 GPU 设备上速度快、精度高的网络,超越其他 GPU 端 SOTA 模型。
<a name='2'></a>
## 2.精度、FLOPs 和参数量
| Models | Top1 | Top5 | FLOPs<br>(G) | Params<br/>(M) |
|:--:|:--:|:--:|:--:|:--:|
| PPHGNet_tiny | 79.83 | 95.04 | 4.54 | 14.75 |
| PPHGNet_tiny_ssld | 81.95 | 96.12 | 4.54 | 14.75 |
| PPHGNet_small | 81.51 | 95.82 | 8.53 | 24.38 |
关于 Inference speed 等信息,敬请期待。
# PP-LCNetV2 系列
---
## 概述
PP-LCNetV2 是在 [PP-LCNet 系列模型](./PP-LCNet.md)的基础上,所提出的针对 Intel CPU 硬件平台设计的计算机视觉骨干网络,该模型更为
在不使用额外数据的前提下,PPLCNetV2_base 模型在图像分类 ImageNet 数据集上能够取得超过 77% 的 Top1 Acc,同时在 Intel CPU 平台仅有 4.4 ms 以下的延迟,如下表所示,其中延时测试基于 Intel(R) Xeon(R) Gold 6271C CPU @ 2.60GHz 硬件平台,OpenVINO 2021.4.2推理平台。
| Model | Params(M) | FLOPs(M) | Top-1 Acc(\%) | Top-5 Acc(\%) | Latency(ms) |
|-------|-----------|----------|---------------|---------------|-------------|
| PPLCNetV2_base | 6.6 | 604 | 77.04 | 93.27 | 4.32 |
关于 PP-LCNetV2 系列模型的更多信息,敬请关注。
......@@ -22,7 +22,9 @@ from ppcls.arch.backbone.legendary_models.vgg import VGG11, VGG13, VGG16, VGG19
from ppcls.arch.backbone.legendary_models.inception_v3 import InceptionV3
from ppcls.arch.backbone.legendary_models.hrnet import HRNet_W18_C, HRNet_W30_C, HRNet_W32_C, HRNet_W40_C, HRNet_W44_C, HRNet_W48_C, HRNet_W60_C, HRNet_W64_C, SE_HRNet_W64_C
from ppcls.arch.backbone.legendary_models.pp_lcnet import PPLCNet_x0_25, PPLCNet_x0_35, PPLCNet_x0_5, PPLCNet_x0_75, PPLCNet_x1_0, PPLCNet_x1_5, PPLCNet_x2_0, PPLCNet_x2_5
from ppcls.arch.backbone.legendary_models.pp_lcnet_v2 import PPLCNetV2_base
from ppcls.arch.backbone.legendary_models.esnet import ESNet_x0_25, ESNet_x0_5, ESNet_x0_75, ESNet_x1_0
from ppcls.arch.backbone.legendary_models.pp_hgnet import PPHGNet_tiny, PPHGNet_small, PPHGNet_base
from ppcls.arch.backbone.model_zoo.resnet_vc import ResNet50_vc
from ppcls.arch.backbone.model_zoo.resnext import ResNeXt50_32x4d, ResNeXt50_64x4d, ResNeXt101_32x4d, ResNeXt101_64x4d, ResNeXt152_32x4d, ResNeXt152_64x4d
......
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import KaimingNormal, Constant
from paddle.nn import Conv2D, BatchNorm2D, ReLU, AdaptiveAvgPool2D, MaxPool2D
from paddle.regularizer import L2Decay
from paddle import ParamAttr
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {
"PPHGNet_tiny":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_tiny_pretrained.pdparams",
"PPHGNet_small":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_small_pretrained.pdparams"
}
__all__ = list(MODEL_URLS.keys())
kaiming_normal_ = KaimingNormal()
zeros_ = Constant(value=0.)
ones_ = Constant(value=1.)
class ConvBNAct(TheseusLayer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride,
groups=1,
use_act=True):
super().__init__()
self.use_act = use_act
self.conv = Conv2D(
in_channels,
out_channels,
kernel_size,
stride,
padding=(kernel_size - 1) // 2,
groups=groups,
bias_attr=False)
self.bn = BatchNorm2D(
out_channels,
weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
if self.use_act:
self.act = ReLU()
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
if self.use_act:
x = self.act(x)
return x
class ESEModule(TheseusLayer):
def __init__(self, channels):
super().__init__()
self.avg_pool = AdaptiveAvgPool2D(1)
self.conv = Conv2D(
in_channels=channels,
out_channels=channels,
kernel_size=1,
stride=1,
padding=0)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
identity = x
x = self.avg_pool(x)
x = self.conv(x)
x = self.sigmoid(x)
return paddle.multiply(x=identity, y=x)
class HG_Block(TheseusLayer):
def __init__(
self,
in_channels,
mid_channels,
out_channels,
layer_num,
identity=False, ):
super().__init__()
self.identity = identity
self.layers = nn.LayerList()
self.layers.append(
ConvBNAct(
in_channels=in_channels,
out_channels=mid_channels,
kernel_size=3,
stride=1))
for _ in range(layer_num - 1):
self.layers.append(
ConvBNAct(
in_channels=mid_channels,
out_channels=mid_channels,
kernel_size=3,
stride=1))
# feature aggregation
total_channels = in_channels + layer_num * mid_channels
self.aggregation_conv = ConvBNAct(
in_channels=total_channels,
out_channels=out_channels,
kernel_size=1,
stride=1)
self.att = ESEModule(out_channels)
def forward(self, x):
identity = x
output = []
output.append(x)
for layer in self.layers:
x = layer(x)
output.append(x)
x = paddle.concat(output, axis=1)
x = self.aggregation_conv(x)
x = self.att(x)
if self.identity:
x += identity
return x
class HG_Stage(TheseusLayer):
def __init__(self,
in_channels,
mid_channels,
out_channels,
block_num,
layer_num,
downsample=True):
super().__init__()
self.downsample = downsample
if downsample:
self.downsample = ConvBNAct(
in_channels=in_channels,
out_channels=in_channels,
kernel_size=3,
stride=2,
groups=in_channels,
use_act=False)
blocks_list = []
blocks_list.append(
HG_Block(
in_channels,
mid_channels,
out_channels,
layer_num,
identity=False))
for _ in range(block_num - 1):
blocks_list.append(
HG_Block(
out_channels,
mid_channels,
out_channels,
layer_num,
identity=True))
self.blocks = nn.Sequential(*blocks_list)
def forward(self, x):
if self.downsample:
x = self.downsample(x)
x = self.blocks(x)
return x
class PPHGNet(TheseusLayer):
"""
PPHGNet
Args:
stem_channels: list. Stem channel list of PPHGNet.
stage_config: dict. The configuration of each stage of PPHGNet. such as the number of channels, stride, etc.
layer_num: int. Number of layers of HG_Block.
use_last_conv: boolean. Whether to use a 1x1 convolutional layer before the classification layer.
class_expand: int=2048. Number of channels for the last 1x1 convolutional layer.
dropout_prob: float. Parameters of dropout, 0.0 means dropout is not used.
class_num: int=1000. The number of classes.
Returns:
model: nn.Layer. Specific PPHGNet model depends on args.
"""
def __init__(self,
stem_channels,
stage_config,
layer_num,
use_last_conv=True,
class_expand=2048,
dropout_prob=0.0,
class_num=1000):
super().__init__()
self.use_last_conv = use_last_conv
self.class_expand = class_expand
# stem
stem_channels.insert(0, 3)
self.stem = nn.Sequential(* [
ConvBNAct(
in_channels=stem_channels[i],
out_channels=stem_channels[i + 1],
kernel_size=3,
stride=2 if i == 0 else 1) for i in range(
len(stem_channels) - 1)
])
self.pool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
# stages
self.stages = nn.LayerList()
for k in stage_config:
in_channels, mid_channels, out_channels, block_num, downsample = stage_config[
k]
self.stages.append(
HG_Stage(in_channels, mid_channels, out_channels, block_num,
layer_num, downsample))
self.avg_pool = AdaptiveAvgPool2D(1)
if self.use_last_conv:
self.last_conv = Conv2D(
in_channels=out_channels,
out_channels=self.class_expand,
kernel_size=1,
stride=1,
padding=0,
bias_attr=False)
self.act = nn.ReLU()
self.dropout = nn.Dropout(
p=dropout_prob, mode="downscale_in_infer")
self.flatten = nn.Flatten(start_axis=1, stop_axis=-1)
self.fc = nn.Linear(self.class_expand
if self.use_last_conv else out_channels, class_num)
self._init_weights()
def _init_weights(self):
for m in self.sublayers():
if isinstance(m, nn.Conv2D):
kaiming_normal_(m.weight)
elif isinstance(m, (nn.BatchNorm2D)):
ones_(m.weight)
zeros_(m.bias)
elif isinstance(m, nn.Linear):
zeros_(m.bias)
def forward(self, x):
x = self.stem(x)
x = self.pool(x)
for stage in self.stages:
x = stage(x)
x = self.avg_pool(x)
if self.use_last_conv:
x = self.last_conv(x)
x = self.act(x)
x = self.dropout(x)
x = self.flatten(x)
x = self.fc(x)
return x
def _load_pretrained(pretrained, model, model_url, use_ssld):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def PPHGNet_tiny(pretrained=False, use_ssld=False, **kwargs):
"""
PPHGNet_tiny
Args:
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
Returns:
model: nn.Layer. Specific `PPHGNet_tiny` model depends on args.
"""
stage_config = {
# in_channels, mid_channels, out_channels, blocks, downsample
"stage1": [96, 96, 224, 1, False],
"stage2": [224, 128, 448, 1, True],
"stage3": [448, 160, 512, 2, True],
"stage4": [512, 192, 768, 1, True],
}
model = PPHGNet(
stem_channels=[48, 48, 96],
stage_config=stage_config,
layer_num=5,
**kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["PPHGNet_tiny"], use_ssld)
return model
def PPHGNet_small(pretrained=False, use_ssld=False, **kwargs):
"""
PPHGNet_small
Args:
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
Returns:
model: nn.Layer. Specific `PPHGNet_small` model depends on args.
"""
stage_config = {
# in_channels, mid_channels, out_channels, blocks, downsample
"stage1": [128, 128, 256, 1, False],
"stage2": [256, 160, 512, 1, True],
"stage3": [512, 192, 768, 2, True],
"stage4": [768, 224, 1024, 1, True],
}
model = PPHGNet(
stem_channels=[64, 64, 128],
stage_config=stage_config,
layer_num=6,
**kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["PPHGNet_small"], use_ssld)
return model
def PPHGNet_base(pretrained=False, use_ssld=False, **kwargs):
"""
PPHGNet_base
Args:
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
Returns:
model: nn.Layer. Specific `PPHGNet_base` model depends on args.
"""
stage_config = {
# in_channels, mid_channels, out_channels, blocks, downsample
"stage1": [160, 192, 320, 1, False],
"stage2": [320, 224, 640, 2, True],
"stage3": [640, 256, 960, 3, True],
"stage4": [960, 288, 1280, 2, True],
}
model = PPHGNet(
stem_channels=[96, 96, 160],
stage_config=stage_config,
layer_num=7,
dropout_prob=0.2,
**kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["PPHGNet_base"], use_ssld)
return model
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn import AdaptiveAvgPool2D, BatchNorm2D, Conv2D, Dropout, Linear
from paddle.regularizer import L2Decay
from paddle.nn.initializer import KaimingNormal
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {
"PPLCNetV2_base":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNetV2_base_pretrained.pdparams",
}
__all__ = list(MODEL_URLS.keys())
NET_CONFIG = {
# in_channels, kernel_size, split_pw, use_rep, use_se, use_shortcut
"stage1": [64, 3, False, False, False, False],
"stage2": [128, 3, False, False, False, False],
"stage3": [256, 5, True, True, True, False],
"stage4": [512, 5, False, True, False, True],
}
def make_divisible(v, divisor=8, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v:
new_v += divisor
return new_v
class ConvBNLayer(TheseusLayer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride,
groups=1,
use_act=True):
super().__init__()
self.use_act = use_act
self.conv = Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=(kernel_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(initializer=KaimingNormal()),
bias_attr=False)
self.bn = BatchNorm2D(
out_channels,
weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
if self.use_act:
self.act = nn.ReLU()
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
if self.use_act:
x = self.act(x)
return x
class SEModule(TheseusLayer):
def __init__(self, channel, reduction=4):
super().__init__()
self.avg_pool = AdaptiveAvgPool2D(1)
self.conv1 = Conv2D(
in_channels=channel,
out_channels=channel // reduction,
kernel_size=1,
stride=1,
padding=0)
self.relu = nn.ReLU()
self.conv2 = Conv2D(
in_channels=channel // reduction,
out_channels=channel,
kernel_size=1,
stride=1,
padding=0)
self.hardsigmoid = nn.Sigmoid()
def forward(self, x):
identity = x
x = self.avg_pool(x)
x = self.conv1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.hardsigmoid(x)
x = paddle.multiply(x=identity, y=x)
return x
class RepDepthwiseSeparable(TheseusLayer):
def __init__(self,
in_channels,
out_channels,
stride,
dw_size=3,
split_pw=False,
use_rep=False,
use_se=False,
use_shortcut=False):
super().__init__()
self.is_repped = False
self.dw_size = dw_size
self.split_pw = split_pw
self.use_rep = use_rep
self.use_se = use_se
self.use_shortcut = True if use_shortcut and stride == 1 and in_channels == out_channels else False
if self.use_rep:
self.dw_conv_list = nn.LayerList()
for kernel_size in range(self.dw_size, 0, -2):
if kernel_size == 1 and stride != 1:
continue
dw_conv = ConvBNLayer(
in_channels=in_channels,
out_channels=in_channels,
kernel_size=kernel_size,
stride=stride,
groups=in_channels,
use_act=False)
self.dw_conv_list.append(dw_conv)
self.dw_conv = nn.Conv2D(
in_channels=in_channels,
out_channels=in_channels,
kernel_size=dw_size,
stride=stride,
padding=(dw_size - 1) // 2,
groups=in_channels)
else:
self.dw_conv = ConvBNLayer(
in_channels=in_channels,
out_channels=in_channels,
kernel_size=dw_size,
stride=stride,
groups=in_channels)
self.act = nn.ReLU()
if use_se:
self.se = SEModule(in_channels)
if self.split_pw:
pw_ratio = 0.5
self.pw_conv_1 = ConvBNLayer(
in_channels=in_channels,
kernel_size=1,
out_channels=int(out_channels * pw_ratio),
stride=1)
self.pw_conv_2 = ConvBNLayer(
in_channels=int(out_channels * pw_ratio),
kernel_size=1,
out_channels=out_channels,
stride=1)
else:
self.pw_conv = ConvBNLayer(
in_channels=in_channels,
kernel_size=1,
out_channels=out_channels,
stride=1)
def forward(self, x):
if self.use_rep:
input_x = x
if self.is_repped:
x = self.act(self.dw_conv(x))
else:
y = self.dw_conv_list[0](x)
for dw_conv in self.dw_conv_list[1:]:
y += dw_conv(x)
x = self.act(y)
else:
x = self.dw_conv(x)
if self.use_se:
x = self.se(x)
if self.split_pw:
x = self.pw_conv_1(x)
x = self.pw_conv_2(x)
else:
x = self.pw_conv(x)
if self.use_shortcut:
x = x + input_x
return x
def rep(self):
if self.use_rep:
self.is_repped = True
kernel, bias = self._get_equivalent_kernel_bias()
self.dw_conv.weight.set_value(kernel)
self.dw_conv.bias.set_value(bias)
def _get_equivalent_kernel_bias(self):
kernel_sum = 0
bias_sum = 0
for dw_conv in self.dw_conv_list:
kernel, bias = self._fuse_bn_tensor(dw_conv)
kernel = self._pad_tensor(kernel, to_size=self.dw_size)
kernel_sum += kernel
bias_sum += bias
return kernel_sum, bias_sum
def _fuse_bn_tensor(self, branch):
kernel = branch.conv.weight
running_mean = branch.bn._mean
running_var = branch.bn._variance
gamma = branch.bn.weight
beta = branch.bn.bias
eps = branch.bn._epsilon
std = (running_var + eps).sqrt()
t = (gamma / std).reshape((-1, 1, 1, 1))
return kernel * t, beta - running_mean * gamma / std
def _pad_tensor(self, tensor, to_size):
from_size = tensor.shape[-1]
if from_size == to_size:
return tensor
pad = (to_size - from_size) // 2
return F.pad(tensor, [pad, pad, pad, pad])
class PPLCNetV2(TheseusLayer):
def __init__(self,
scale,
depths,
class_num=1000,
dropout_prob=0,
use_last_conv=True,
class_expand=1280):
super().__init__()
self.scale = scale
self.use_last_conv = use_last_conv
self.class_expand = class_expand
self.stem = nn.Sequential(* [
ConvBNLayer(
in_channels=3,
kernel_size=3,
out_channels=make_divisible(32 * scale),
stride=2), RepDepthwiseSeparable(
in_channels=make_divisible(32 * scale),
out_channels=make_divisible(64 * scale),
stride=1,
dw_size=3)
])
# stages
self.stages = nn.LayerList()
for depth_idx, k in enumerate(NET_CONFIG):
in_channels, kernel_size, split_pw, use_rep, use_se, use_shortcut = NET_CONFIG[
k]
self.stages.append(
nn.Sequential(* [
RepDepthwiseSeparable(
in_channels=make_divisible((in_channels if i == 0 else
in_channels * 2) * scale),
out_channels=make_divisible(in_channels * 2 * scale),
stride=2 if i == 0 else 1,
dw_size=kernel_size,
split_pw=split_pw,
use_rep=use_rep,
use_se=use_se,
use_shortcut=use_shortcut)
for i in range(depths[depth_idx])
]))
self.avg_pool = AdaptiveAvgPool2D(1)
if self.use_last_conv:
self.last_conv = Conv2D(
in_channels=make_divisible(NET_CONFIG["stage4"][0] * 2 *
scale),
out_channels=self.class_expand,
kernel_size=1,
stride=1,
padding=0,
bias_attr=False)
self.act = nn.ReLU()
self.dropout = Dropout(p=dropout_prob, mode="downscale_in_infer")
self.flatten = nn.Flatten(start_axis=1, stop_axis=-1)
in_features = self.class_expand if self.use_last_conv else NET_CONFIG[
"stage4"][0] * 2 * scale
self.fc = Linear(in_features, class_num)
def forward(self, x):
x = self.stem(x)
for stage in self.stages:
x = stage(x)
x = self.avg_pool(x)
if self.use_last_conv:
x = self.last_conv(x)
x = self.act(x)
x = self.dropout(x)
x = self.flatten(x)
x = self.fc(x)
return x
def _load_pretrained(pretrained, model, model_url, use_ssld):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def PPLCNetV2_base(pretrained=False, use_ssld=False, **kwargs):
"""
PPLCNetV2_base
Args:
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
Returns:
model: nn.Layer. Specific `PPLCNetV2_base` model depends on args.
"""
model = PPLCNetV2(
scale=1.0, depths=[2, 2, 6, 2], dropout_prob=0.2, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["PPLCNetV2_base"], use_ssld)
return model
......@@ -124,13 +124,7 @@ class RepVGGBlock(nn.Layer):
groups=groups)
def forward(self, inputs):
if not self.training and not self.is_repped:
self.rep()
self.is_repped = True
if self.training and self.is_repped:
self.is_repped = False
if not self.training:
if self.is_repped:
return self.nonlinearity(self.rbr_reparam(inputs))
if self.rbr_identity is None:
......@@ -154,6 +148,7 @@ class RepVGGBlock(nn.Layer):
kernel, bias = self.get_equivalent_kernel_bias()
self.rbr_reparam.weight.set_value(kernel)
self.rbr_reparam.bias.set_value(bias)
self.is_repped = True
def get_equivalent_kernel_bias(self):
kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
......
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 600
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: ./inference
# training model under @to_static
to_static: False
use_dali: False
# mixed precision training
AMP:
scale_loss: 128.0
use_dynamic_loss_scaling: True
# O1: mixed fp16
level: O1
# model architecture
Arch:
name: PPHGNet_small
class_num: 1000
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
epsilon: 0.1
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: Cosine
learning_rate: 0.5
warmup_epoch: 5
regularizer:
name: 'L2'
coeff: 0.00004
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- RandCropImage:
size: 224
interpolation: bicubic
backend: pil
- RandFlipImage:
flip_code: 1
- TimmAutoAugment:
config_str: rand-m7-mstd0.5-inc1
interpolation: bicubic
img_size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- RandomErasing:
EPSILON: 0.25
sl: 0.02
sh: 1.0/3.0
r1: 0.3
attempt: 10
use_log_aspect: True
mode: pixel
batch_transform_ops:
- OpSampler:
MixupOperator:
alpha: 0.2
prob: 0.5
CutmixOperator:
alpha: 1.0
prob: 0.5
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: True
loader:
num_workers: 16
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 236
interpolation: bicubic
backend: pil
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: False
loader:
num_workers: 16
use_shared_memory: True
Infer:
infer_imgs: docs/images/inference_deployment/whl_demo.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 236
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
topk: 5
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
Metric:
Train:
- TopkAcc:
topk: [1, 5]
Eval:
- TopkAcc:
topk: [1, 5]
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 600
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: ./inference
# training model under @to_static
to_static: False
use_dali: False
# mixed precision training
AMP:
scale_loss: 128.0
use_dynamic_loss_scaling: True
# O1: mixed fp16
level: O1
# model architecture
Arch:
name: PPHGNet_tiny
class_num: 1000
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
epsilon: 0.1
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: Cosine
learning_rate: 0.5
warmup_epoch: 5
regularizer:
name: 'L2'
coeff: 0.00004
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- RandCropImage:
size: 224
interpolation: bicubic
backend: pil
- RandFlipImage:
flip_code: 1
- TimmAutoAugment:
config_str: rand-m7-mstd0.5-inc1
interpolation: bicubic
img_size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- RandomErasing:
EPSILON: 0.25
sl: 0.02
sh: 1.0/3.0
r1: 0.3
attempt: 10
use_log_aspect: True
mode: pixel
batch_transform_ops:
- OpSampler:
MixupOperator:
alpha: 0.2
prob: 0.5
CutmixOperator:
alpha: 1.0
prob: 0.5
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: True
loader:
num_workers: 16
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 232
interpolation: bicubic
backend: pil
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: False
loader:
num_workers: 16
use_shared_memory: True
Infer:
infer_imgs: docs/images/inference_deployment/whl_demo.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 232
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
topk: 5
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
Metric:
Train:
- TopkAcc:
topk: [1, 5]
Eval:
- TopkAcc:
topk: [1, 5]
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 480
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: ./inference
# model architecture
Arch:
name: PPLCNetV2_base
class_num: 1000
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
epsilon: 0.1
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: Cosine
learning_rate: 0.8
warmup_epoch: 5
regularizer:
name: 'L2'
coeff: 0.00004
# data loader for train and eval
DataLoader:
Train:
dataset:
name: MultiScaleDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- RandCropImage:
size: 224
- RandFlipImage:
flip_code: 1
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
# support to specify width and height respectively:
# scales: [(160,160), (192,192), (224,224) (288,288) (320,320)]
sampler:
name: MultiScaleSampler
scales: [160, 192, 224, 288, 320]
# first_bs: batch size for the first image resolution in the scales list
# divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple
first_bs: 500
divided_factor: 32
is_training: True
loader:
num_workers: 4
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Infer:
infer_imgs: docs/images/inference_deployment/whl_demo.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
topk: 5
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
Metric:
Train:
- TopkAcc:
topk: [1, 5]
Eval:
- TopkAcc:
topk: [1, 5]
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 120
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: ./inference
# training model under @to_static
to_static: False
# model architecture
Arch:
name: MobileNetV1
class_num: 1000
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: Piecewise
learning_rate: 0.1
decay_epochs: [30, 60, 90]
values: [0.1, 0.01, 0.001, 0.0001]
regularizer:
name: 'L2'
coeff: 0.00003
# data loader for train and eval
DataLoader:
Train:
dataset:
name: MultiScaleDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- RandCropImage:
size: 224
- RandFlipImage:
flip_code: 1
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
# support to specify width and height respectively:
# scales: [(160,160), (192,192), (224,224) (288,288) (320,320)]
sampler:
name: MultiScaleSampler
scales: [160, 192, 224, 288, 320]
# first_bs: batch size for the first image resolution in the scales list
# divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple
first_bs: 64
divided_factor: 32
is_training: True
loader:
num_workers: 4
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Infer:
infer_imgs: docs/images/whl/demo.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
topk: 5
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
Metric:
Train:
- TopkAcc:
topk: [1, 5]
Eval:
- TopkAcc:
topk: [1, 5]
......@@ -79,6 +79,7 @@ DataLoader:
- ResizeImage:
size: [128, 256]
return_numpy: False
interpolation: 'bilinear'
backend: "pil"
- RandFlipImage:
flip_code: 1
......@@ -110,6 +111,7 @@ DataLoader:
- ResizeImage:
size: [128, 256]
return_numpy: False
interpolation: 'bilinear'
backend: "pil"
- ToTensor:
- Normalize:
......@@ -134,6 +136,7 @@ DataLoader:
- ResizeImage:
size: [128, 256]
return_numpy: False
interpolation: 'bilinear'
backend: "pil"
- ToTensor:
- Normalize:
......
......@@ -91,6 +91,7 @@ DataLoader:
- ResizeImage:
size: [128, 256]
return_numpy: False
interpolation: 'bilinear'
backend: "pil"
- RandFlipImage:
flip_code: 1
......@@ -128,6 +129,7 @@ DataLoader:
- ResizeImage:
size: [128, 256]
return_numpy: False
interpolation: 'bilinear'
backend: "pil"
- ToTensor:
- Normalize:
......@@ -152,6 +154,7 @@ DataLoader:
- ResizeImage:
size: [128, 256]
return_numpy: False
interpolation: 'bilinear'
backend: "pil"
- ToTensor:
- Normalize:
......
......@@ -102,6 +102,7 @@ DataLoader:
- ResizeImage:
size: [128, 256]
return_numpy: False
interpolation: 'bilinear'
backend: "pil"
- RandFlipImage:
flip_code: 1
......@@ -139,6 +140,7 @@ DataLoader:
- ResizeImage:
size: [128, 256]
return_numpy: False
interpolation: 'bilinear'
backend: "pil"
- ToTensor:
- Normalize:
......@@ -163,6 +165,7 @@ DataLoader:
- ResizeImage:
size: [128, 256]
return_numpy: False
interpolation: 'bilinear'
backend: "pil"
- ToTensor:
- Normalize:
......
......@@ -28,12 +28,15 @@ from ppcls.data.dataloader.vehicle_dataset import CompCars, VeriWild
from ppcls.data.dataloader.logo_dataset import LogoDataset
from ppcls.data.dataloader.icartoon_dataset import ICartoonDataset
from ppcls.data.dataloader.mix_dataset import MixDataset
from ppcls.data.dataloader.multi_scale_dataset import MultiScaleDataset
from ppcls.data.dataloader.person_dataset import Market1501, MSMT17
# sampler
from ppcls.data.dataloader.DistributedRandomIdentitySampler import DistributedRandomIdentitySampler
from ppcls.data.dataloader.pk_sampler import PKSampler
from ppcls.data.dataloader.mix_sampler import MixSampler
from ppcls.data.dataloader.multi_scale_sampler import MultiScaleSampler
from ppcls.data import preprocess
from ppcls.data.preprocess import transform
......
......@@ -5,6 +5,8 @@ from ppcls.data.dataloader.vehicle_dataset import CompCars, VeriWild
from ppcls.data.dataloader.logo_dataset import LogoDataset
from ppcls.data.dataloader.icartoon_dataset import ICartoonDataset
from ppcls.data.dataloader.mix_dataset import MixDataset
from ppcls.data.dataloader.multi_scale_dataset import MultiScaleDataset
from ppcls.data.dataloader.mix_sampler import MixSampler
from ppcls.data.dataloader.multi_scale_sampler import MultiScaleSampler
from ppcls.data.dataloader.pk_sampler import PKSampler
from ppcls.data.dataloader.person_dataset import Market1501, MSMT17
......@@ -230,7 +230,7 @@ def dali_dataloader(config, mode, device, seed=None):
lower = ratio[0]
upper = ratio[1]
if 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env:
if 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env and 'FLAGS_selected_gpus' in env:
shard_id = int(env['PADDLE_TRAINER_ID'])
num_shards = int(env['PADDLE_TRAINERS_NUM'])
device_id = int(env['FLAGS_selected_gpus'])
......@@ -282,7 +282,7 @@ def dali_dataloader(config, mode, device, seed=None):
else:
resize_shorter = transforms["ResizeImage"].get("resize_short", 256)
crop = transforms["CropImage"]["size"]
if 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env and sampler_name == "DistributedBatchSampler":
if 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env and 'FLAGS_selected_gpus' in env and sampler_name == "DistributedBatchSampler":
shard_id = int(env['PADDLE_TRAINER_ID'])
num_shards = int(env['PADDLE_TRAINERS_NUM'])
device_id = int(env['FLAGS_selected_gpus'])
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import os
from paddle.io import Dataset
from paddle.vision import transforms
import cv2
import warnings
from ppcls.data import preprocess
from ppcls.data.preprocess import transform
from ppcls.data.preprocess.ops.operators import DecodeImage
from ppcls.utils import logger
from ppcls.data.dataloader.common_dataset import create_operators
class MultiScaleDataset(Dataset):
def __init__(
self,
image_root,
cls_label_path,
transform_ops=None, ):
self._img_root = image_root
self._cls_path = cls_label_path
self.transform_ops = transform_ops
self.images = []
self.labels = []
self._load_anno()
self.has_crop_flag = 1
def _load_anno(self, seed=None):
assert os.path.exists(self._cls_path)
assert os.path.exists(self._img_root)
self.images = []
self.labels = []
with open(self._cls_path) as fd:
lines = fd.readlines()
if seed is not None:
np.random.RandomState(seed).shuffle(lines)
for l in lines:
l = l.strip().split(" ")
self.images.append(os.path.join(self._img_root, l[0]))
self.labels.append(np.int64(l[1]))
assert os.path.exists(self.images[-1])
def __getitem__(self, properties):
# properites is a tuple, contains (width, height, index)
img_width = properties[0]
img_height = properties[1]
index = properties[2]
has_crop = False
if self.transform_ops:
for i in range(len(self.transform_ops)):
op = self.transform_ops[i]
resize_op = ['RandCropImage', 'ResizeImage', 'CropImage']
for resize in resize_op:
if resize in op:
if self.has_crop_flag:
logger.warning(
"Multi scale dataset will crop image according to the multi scale resolution"
)
self.transform_ops[i][resize] = {
'size': (img_width, img_height)
}
has_crop = True
self.has_crop_flag = 0
if has_crop == False:
logger.error("Multi scale dateset requests RandCropImage")
raise RuntimeError("Multi scale dateset requests RandCropImage")
self._transform_ops = create_operators(self.transform_ops)
try:
with open(self.images[index], 'rb') as f:
img = f.read()
if self._transform_ops:
img = transform(img, self._transform_ops)
img = img.transpose((2, 0, 1))
return (img, self.labels[index])
except Exception as ex:
logger.error("Exception occured when parse line: {} with msg: {}".
format(self.images[index], ex))
rnd_idx = np.random.randint(self.__len__())
return self.__getitem__(rnd_idx)
def __len__(self):
return len(self.images)
@property
def class_num(self):
return len(set(self.labels))
from paddle.io import Sampler
import paddle.distributed as dist
import math
import random
import numpy as np
from ppcls import data
class MultiScaleSampler(Sampler):
def __init__(self,
data_source,
scales,
first_bs,
divided_factor=32,
is_training=True,
seed=None):
"""
multi scale samper
Args:
data_source(dataset)
scales(list): several scales for image resolution
first_bs(int): batch size for the first scale in scales
divided_factor(int): ImageNet models down-sample images by a factor, ensure that width and height dimensions are multiples are multiple of devided_factor.
is_training(boolean): mode
"""
# min. and max. spatial dimensions
self.data_source = data_source
self.n_data_samples = len(self.data_source)
if isinstance(scales[0], tuple):
width_dims = [i[0] for i in scales]
height_dims = [i[1] for i in scales]
elif isinstance(scales[0], int):
width_dims = scales
height_dims = scales
base_im_w = width_dims[0]
base_im_h = height_dims[0]
base_batch_size = first_bs
# Get the GPU and node related information
num_replicas = dist.get_world_size()
rank = dist.get_rank()
# adjust the total samples to avoid batch dropping
num_samples_per_replica = int(
math.ceil(self.n_data_samples * 1.0 / num_replicas))
img_indices = [idx for idx in range(self.n_data_samples)]
self.shuffle = False
if is_training:
# compute the spatial dimensions and corresponding batch size
# ImageNet models down-sample images by a factor of 32.
# Ensure that width and height dimensions are multiples are multiple of 32.
width_dims = [
int((w // divided_factor) * divided_factor) for w in width_dims
]
height_dims = [
int((h // divided_factor) * divided_factor)
for h in height_dims
]
img_batch_pairs = list()
base_elements = base_im_w * base_im_h * base_batch_size
for (h, w) in zip(height_dims, width_dims):
batch_size = int(max(1, (base_elements / (h * w))))
img_batch_pairs.append((w, h, batch_size))
self.img_batch_pairs = img_batch_pairs
self.shuffle = True
else:
self.img_batch_pairs = [(base_im_w, base_im_h, base_batch_size)]
self.img_indices = img_indices
self.n_samples_per_replica = num_samples_per_replica
self.epoch = 0
self.rank = rank
self.num_replicas = num_replicas
self.seed = seed
self.batch_list = []
self.current = 0
indices_rank_i = self.img_indices[self.rank:len(self.img_indices):
self.num_replicas]
while self.current < self.n_samples_per_replica:
curr_w, curr_h, curr_bsz = random.choice(self.img_batch_pairs)
end_index = min(self.current + curr_bsz,
self.n_samples_per_replica)
batch_ids = indices_rank_i[self.current:end_index]
n_batch_samples = len(batch_ids)
if n_batch_samples != curr_bsz:
batch_ids += indices_rank_i[:(curr_bsz - n_batch_samples)]
self.current += curr_bsz
if len(batch_ids) > 0:
batch = [curr_w, curr_h, len(batch_ids)]
self.batch_list.append(batch)
self.length = len(self.batch_list)
def __iter__(self):
if self.shuffle:
if self.seed is not None:
random.seed(self.seed)
else:
random.seed(self.epoch)
random.shuffle(self.img_indices)
random.shuffle(self.img_batch_pairs)
indices_rank_i = self.img_indices[self.rank:len(self.img_indices):
self.num_replicas]
else:
indices_rank_i = self.img_indices[self.rank:len(self.img_indices):
self.num_replicas]
start_index = 0
for batch_tuple in self.batch_list:
curr_w, curr_h, curr_bsz = batch_tuple
end_index = min(start_index + curr_bsz, self.n_samples_per_replica)
batch_ids = indices_rank_i[start_index:end_index]
n_batch_samples = len(batch_ids)
if n_batch_samples != curr_bsz:
batch_ids += indices_rank_i[:(curr_bsz - n_batch_samples)]
start_index += curr_bsz
if len(batch_ids) > 0:
batch = [(curr_w, curr_h, b_id) for b_id in batch_ids]
yield batch
def set_epoch(self, epoch: int):
self.epoch = epoch
def __len__(self):
return self.length
......@@ -452,6 +452,12 @@ class Engine(object):
self.config["Global"]["pretrained_model"])
model.eval()
# for rep nets
for layer in self.model.sublayers():
if hasattr(layer, "rep"):
layer.rep()
save_path = os.path.join(self.config["Global"]["save_inference_dir"],
"inference")
if model.quanter:
......
......@@ -116,9 +116,8 @@ def init_model(config, net, optimizer=None, loss: paddle.nn.Layer=None):
load_distillation_model(net, pretrained_model)
else: # common load
load_dygraph_pretrain(net, path=pretrained_model)
logger.info(
logger.coloring("Finish load pretrained model from {}".format(
pretrained_model), "HEADER"))
logger.info("Finish load pretrained model from {}".format(
pretrained_model))
def save_model(net,
......
===========================train_params===========================
model_name:PPHGNet_small
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_small_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml -o PreProcess.transform_ops.0.ResizeImage.resize_short=236
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
===========================train_params===========================
model_name:PPHGNet_tiny
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_tiny.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_tiny.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_tiny.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_tiny_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml -o PreProcess.transform_ops.0.ResizeImage.resize_short=232
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
===========================train_params===========================
model_name:PPLCNetV2_base
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.first_bs:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNetV2/PPLCNetV2_base.yaml -o Global.seed=1234 -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNetV2/PPLCNetV2_base.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/PPLCNetV2/PPLCNetV2_base.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNetV2_base_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册