Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
42e510ec
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 2 年 前同步成功
通知
118
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
42e510ec
编写于
6月 13, 2022
作者:
C
cuicheng01
提交者:
GitHub
6月 13, 2022
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #2043 from cuicheng01/update_pulc_docs_v2
Update pulc docs v2
上级
3fda9376
21e2d396
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
8 addition
and
8 deletion
+8
-8
docs/zh_CN/PULC/PULC_train.md
docs/zh_CN/PULC/PULC_train.md
+8
-8
未找到文件。
docs/zh_CN/PULC/PULC_train.md
浏览文件 @
42e510ec
...
...
@@ -24,7 +24,7 @@
图像分类是计算机视觉的基础算法之一,是企业应用中最常见的算法,也是许多 CV 应用的重要组成部分。近年来,骨干网络模型发展迅速,ImageNet 的精度纪录被不断刷新。然而,这些模型在实用场景的表现有时却不尽如人意。一方面,精度高的模型往往体积大,运算慢,常常难以满足实际部署需求;另一方面,选择了合适的模型之后,往往还需要经验丰富的工程师进行调参,费时费力。PaddleClas 为了解决企业应用难题,让分类模型的训练和调参更加容易,总结推出了实用轻量图像分类解决方案(PULC, Practical Ultra Lightweight Classification)。PULC融合了骨干网络、数据增广、蒸馏等多种前沿算法,可以自动训练得到轻量且高精度的图像分类模型。
PULC 方案在人、车、OCR等方向的多个场景中均验证有效,用超轻量模型就可实现与
SwinTransformer
模型接近的精度,预测速度提高 40+ 倍。
PULC 方案在人、车、OCR等方向的多个场景中均验证有效,用超轻量模型就可实现与
SwinTransformer
模型接近的精度,预测速度提高 40+ 倍。
<div
align=
"center"
>
<img
src=
"https://user-images.githubusercontent.com/19523330/173011854-b10fcd7a-b799-4dfd-a1cf-9504952a3c44.png"
width =
"800"
/>
...
...
@@ -78,7 +78,7 @@ train
tree
-r
-i
-f
train |
grep
-E
"jpg|JPG|jpeg|JPEG|png|PNG"
|
awk
-F
"/"
'{print $0" "$2}'
>
train_list.txt
```
其中,如果
需要传入更多的数据类型,可以增加
`grep -E`
后的内容,
`$2`
中的
`2`
为类别号文件夹的层级。
其中,如果
涉及更多的图片名称尾缀,可以增加
`grep -E`
后的内容,
`$2`
中的
`2`
为类别号文件夹的层级。
**备注:**
以上为数据集获取和生成的方法介绍,这里您可以直接下载有人/无人场景数据快速开始体验。
...
...
@@ -105,20 +105,20 @@ cd ../
#### 3.1 骨干网络PP-LCNet
PULC
采用了轻量骨干网络PP-LCNet,相比同精度竞品速度快
50%,您可以在
[
PP-LCNet介绍
](
../models/PP-LCNet.md
)
查阅该骨干网络的详细介绍。
直接使用
PP-LCNet
训练的命令为:
PULC
采用了轻量骨干网络 PP-LCNet,相比同精度竞品速度快
50%,您可以在
[
PP-LCNet介绍
](
../models/PP-LCNet.md
)
查阅该骨干网络的详细介绍。
直接使用
PP-LCNet
训练的命令为:
```
shell
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3
python3
-m
paddle.distributed.launch
\
--gpus
=
"0,1,2,3"
\
tools/train.py
\
-c
./ppcls/configs/PULC/person_exists/PPLCNet_x1_0.yaml
-c
./ppcls/configs/PULC/person_exists/PPLCNet_x1_0
_search
.yaml
```
为了方便性能对比,我们也提供了大模型 SwinTransformer
和轻量模型 MobileNetV3
的配置文件,您可以使用命令训练:
为了方便性能对比,我们也提供了大模型 SwinTransformer
_tiny 和轻量模型 MobileNetV3_small_x0_35
的配置文件,您可以使用命令训练:
SwinTransformer:
SwinTransformer
_tiny
:
```
shell
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3
...
...
@@ -128,7 +128,7 @@ python3 -m paddle.distributed.launch \
-c
./ppcls/configs/PULC/person_exists/SwinTransformer_tiny_patch4_window7_224.yaml
```
MobileNetV3:
MobileNetV3
_small_x0_35
:
```
shell
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录