提交 3fa3e577 编写于 作者: W weishengyu

remove names

上级 ad9caea2
......@@ -214,8 +214,7 @@ class Stage(TheseusLayer):
def __init__(self,
num_modules,
num_filters,
has_se=False,
name=None):
has_se=False):
super(Stage, self).__init__()
self._num_modules = num_modules
......@@ -225,8 +224,7 @@ class Stage(TheseusLayer):
self.stage_func_list.append(
HighResolutionModule(
num_filters=num_filters,
has_se=has_se,
name=name + '_' + str(i + 1)))
has_se=has_se))
def forward(self, input, res_dict=None):
out = input
......@@ -238,8 +236,7 @@ class Stage(TheseusLayer):
class HighResolutionModule(TheseusLayer):
def __init__(self,
num_filters,
has_se=False,
name=None):
has_se=False):
super(HighResolutionModule, self).__init__()
self.basic_block_list = nn.LayerList()
......@@ -254,8 +251,7 @@ class HighResolutionModule(TheseusLayer):
self.fuse_func = FuseLayers(
in_channels=num_filters,
out_channels=num_filters,
name=name)
out_channels=num_filters)
def forward(self, input, res_dict=None):
outs = []
......@@ -272,8 +268,7 @@ class HighResolutionModule(TheseusLayer):
class FuseLayers(TheseusLayer):
def __init__(self,
in_channels,
out_channels,
name=None):
out_channels):
super(FuseLayers, self).__init__()
self._actual_ch = len(in_channels)
......@@ -342,8 +337,7 @@ class LastClsOut(TheseusLayer):
def __init__(self,
num_channel_list,
has_se,
num_filters_list=[32, 64, 128, 256],
name=None):
num_filters_list=[32, 64, 128, 256]):
super(LastClsOut, self).__init__()
self.func_list = nn.LayerList()
......@@ -369,19 +363,11 @@ class HRNet(TheseusLayer):
self.width = width
self.has_se = has_se
self.channels = {
18: [[18, 36], [18, 36, 72], [18, 36, 72, 144]],
30: [[30, 60], [30, 60, 120], [30, 60, 120, 240]],
32: [[32, 64], [32, 64, 128], [32, 64, 128, 256]],
40: [[40, 80], [40, 80, 160], [40, 80, 160, 320]],
44: [[44, 88], [44, 88, 176], [44, 88, 176, 352]],
48: [[48, 96], [48, 96, 192], [48, 96, 192, 384]],
60: [[60, 120], [60, 120, 240], [60, 120, 240, 480]],
64: [[64, 128], [64, 128, 256], [64, 128, 256, 512]]
}
self._class_dim = class_dim
channels_2, channels_3, channels_4 = self.channels[width]
channels_2 = [self.width, self.width * 2]
channels_3 = [self.width, self.width * 2, self.width * 4]
channels_4 = [self.width, self.width * 2, self.width * 4, self.width * 8]
self.conv_layer1_1 = ConvBNLayer(
num_channels=3,
......@@ -421,8 +407,7 @@ class HRNet(TheseusLayer):
self.st2 = Stage(
num_modules=1,
num_filters=channels_2,
has_se=self.has_se,
name="st2")
has_se=self.has_se)
self.tr2 = ConvBNLayer(
num_channels=width * 2,
......@@ -433,8 +418,7 @@ class HRNet(TheseusLayer):
self.st3 = Stage(
num_modules=4,
num_filters=channels_3,
has_se=self.has_se,
name="st3")
has_se=self.has_se)
self.tr3 = ConvBNLayer(
num_channels=width * 4,
......@@ -446,16 +430,14 @@ class HRNet(TheseusLayer):
self.st4 = Stage(
num_modules=3,
num_filters=channels_4,
has_se=self.has_se,
name="st4")
has_se=self.has_se)
# classification
num_filters_list = [32, 64, 128, 256]
self.last_cls = LastClsOut(
num_channel_list=channels_4,
has_se=self.has_se,
num_filters_list=num_filters_list,
name="cls_head", )
num_filters_list=num_filters_list)
last_num_filters = [256, 512, 1024]
self.cls_head_conv_list = nn.LayerList()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册