Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
3ec0edc3
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3ec0edc3
编写于
6月 27, 2022
作者:
H
HydrogenSulfate
提交者:
GitHub
6月 27, 2022
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #2098 from HydrogenSulfate/add_main_KL
Add main model's KL chain
上级
093b69f9
e7d9ba58
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
466 addition
and
90 deletion
+466
-90
test_tipc/config/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5_train_ptq_infer_python.txt
...eneralRecognition_PPLCNet_x2_5_train_ptq_infer_python.txt
+54
-0
test_tipc/config/MobileNetV3/MobileNetV3_large_x1_0_train_ptq_infer_python.txt
...leNetV3/MobileNetV3_large_x1_0_train_ptq_infer_python.txt
+60
-0
test_tipc/config/PPHGNet/PPHGNet_small_train_ptq_infer_python.txt
...c/config/PPHGNet/PPHGNet_small_train_ptq_infer_python.txt
+53
-0
test_tipc/config/PPLCNet/PPLCNet_x1_0_train_ptq_infer_python.txt
...pc/config/PPLCNet/PPLCNet_x1_0_train_ptq_infer_python.txt
+53
-0
test_tipc/config/PPLCNetV2/PPLCNetV2_base_train_ptq_infer_python.txt
...onfig/PPLCNetV2/PPLCNetV2_base_train_ptq_infer_python.txt
+53
-0
test_tipc/config/ResNet/ResNet50_vd_train_ptq_infer_python.txt
...tipc/config/ResNet/ResNet50_vd_train_ptq_infer_python.txt
+60
-0
test_tipc/config/SwinTransformer/SwinTransformer_tiny_patch4_window7_224_train_ptq_infer_python.txt
...former_tiny_patch4_window7_224_train_ptq_infer_python.txt
+60
-0
test_tipc/prepare.sh
test_tipc/prepare.sh
+31
-14
test_tipc/test_train_inference_python.sh
test_tipc/test_train_inference_python.sh
+42
-76
未找到文件。
test_tipc/config/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5_train_ptq_infer_python.txt
0 → 100644
浏览文件 @
3ec0edc3
===========================train_params===========================
model_name:GeneralRecognition_PPLCNet_x2_5
python:python3.7
gpu_list:0
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=100
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:pact_train
norm_train:null
pact_train:tools/train.py -c ppcls/configs/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:null
quant_export:tools/export_model.py -c ppcls/configs/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5.yaml
fpgm_export:null
distill_export:null
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5.yaml -o Global.save_inference_dir=./general_PPLCNet_x2_5_lite_v1.0_infer
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/general_PPLCNet_x2_5_lite_v1.0_infer.tar
infer_model:./general_PPLCNet_x2_5_lite_v1.0_infer/
infer_export:True
infer_quant:Fasle
inference:python/predict_rec.py -c configs/inference_rec.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.rec_inference_model_dir:../inference
-o Global.infer_imgs:../dataset/Aliproduct/demo_test/
-o Global.save_log_path:null
-o Global.benchmark:False
null:null
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
\ No newline at end of file
test_tipc/config/MobileNetV3/MobileNetV3_large_x1_0_train_ptq_infer_python.txt
0 → 100644
浏览文件 @
3ec0edc3
===========================train_params===========================
model_name:MobileNetV3_large_x1_0
python:python3.7
gpu_list:0
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:tools/train.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_quantization.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
fpgm_train:tools/train.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_prune.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
distill_train:null
to_static_train:-o Global.to_static=True
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml
quant_export:tools/export_model.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_quantization.yaml
fpgm_export:tools/export_model.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_prune.yaml
distill_export:null
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml -o Global.save_inference_dir=./MobileNetV3_large_x1_0_infer
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_0_infer.tar
infer_model:./MobileNetV3_large_x1_0_infer/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
-o Global.save_log_path:null
-o Global.benchmark:False
null:null
null:null
===========================train_benchmark_params==========================
batch_size:256|640
fp_items:fp32
epoch:1
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
\ No newline at end of file
test_tipc/config/PPHGNet/PPHGNet_small_train_ptq_infer_python.txt
0 → 100644
浏览文件 @
3ec0edc3
===========================train_params===========================
model_name:PPHGNet_small
python:python3.7
gpu_list:0
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml -o Global.save_inference_dir=./PPHGNet_small_infer
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_small_infer.tar
infer_model:./PPHGNet_small_infer/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml -o PreProcess.transform_ops.0.ResizeImage.resize_short=236
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
-o Global.save_log_path:null
-o Global.benchmark:False
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
test_tipc/config/PPLCNet/PPLCNet_x1_0_train_ptq_infer_python.txt
0 → 100644
浏览文件 @
3ec0edc3
===========================train_params===========================
model_name:PPLCNet_x1_0
python:python3.7
gpu_list:0
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x1_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x1_0.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x1_0.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x1_0.yaml -o Global.save_inference_dir=./PPLCNet_x1_0_infer
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x1_0_infer.tar
infer_model:./PPLCNet_x1_0_infer/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
-o Global.save_log_path:null
-o Global.benchmark:False
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
\ No newline at end of file
test_tipc/config/PPLCNetV2/PPLCNetV2_base_train_ptq_infer_python.txt
0 → 100644
浏览文件 @
3ec0edc3
===========================train_params===========================
model_name:PPLCNetV2_base
python:python3.7
gpu_list:0
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.first_bs:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNetV2/PPLCNetV2_base.yaml -o Global.seed=1234 -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNetV2/PPLCNetV2_base.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/PPLCNetV2/PPLCNetV2_base.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/PPLCNetV2/PPLCNetV2_base.yaml -o Global.save_inference_dir=./PPLCNetV2_base_infer
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNetV2_base_infer.tar
infer_model:./PPLCNetV2_base_infer/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
-o Global.save_log_path:null
-o Global.benchmark:False
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
test_tipc/config/ResNet/ResNet50_vd_train_ptq_infer_python.txt
0 → 100644
浏览文件 @
3ec0edc3
===========================train_params===========================
model_name:ResNet50_vd
python:python3.7
gpu_list:0
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=200
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
to_static_train:-o Global.to_static=True
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml -o Global.save_inference_dir=./ResNet50_vd_infer
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_infer.tar
infer_model:./ResNet50_vd_infer/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
-o Global.save_log_path:null
-o Global.benchmark:False
null:null
null:null
===========================train_benchmark_params==========================
batch_size:128
fp_items:fp32
epoch:1
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
\ No newline at end of file
test_tipc/config/SwinTransformer/SwinTransformer_tiny_patch4_window7_224_train_ptq_infer_python.txt
0 → 100644
浏览文件 @
3ec0edc3
===========================train_params===========================
model_name:SwinTransformer_tiny_patch4_window7_224
python:python3.7
gpu_list:0
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/SwinTransformer/SwinTransformer_tiny_patch4_window7_224.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/SwinTransformer/SwinTransformer_tiny_patch4_window7_224.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/SwinTransformer/SwinTransformer_tiny_patch4_window7_224.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/SwinTransformer/SwinTransformer_tiny_patch4_window7_224.yaml -o Global.save_inference_dir=./SwinTransformer_tiny_patch4_window7_224_infer
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_tiny_patch4_window7_224_infer.tar
infer_model:./SwinTransformer_tiny_patch4_window7_224_infer/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
-o Global.save_log_path:null
-o Global.benchmark:False
null:null
null:null
===========================train_benchmark_params==========================
batch_size:64|104
fp_items:fp32
epoch:1
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
\ No newline at end of file
test_tipc/prepare.sh
浏览文件 @
3ec0edc3
...
@@ -141,7 +141,7 @@ model_name=$(func_parser_value "${lines[1]}")
...
@@ -141,7 +141,7 @@ model_name=$(func_parser_value "${lines[1]}")
model_url_value
=
$(
func_parser_value
"
${
lines
[35]
}
"
)
model_url_value
=
$(
func_parser_value
"
${
lines
[35]
}
"
)
model_url_key
=
$(
func_parser_key
"
${
lines
[35]
}
"
)
model_url_key
=
$(
func_parser_key
"
${
lines
[35]
}
"
)
if
[[
$
FILENAME
==
*
GeneralRecognition
*
]]
;
then
if
[[
$
model_name
==
*
ShiTu
*
]]
;
then
cd
dataset
cd
dataset
rm
-rf
Aliproduct
rm
-rf
Aliproduct
rm
-rf
train_reg_all_data.txt
rm
-rf
train_reg_all_data.txt
...
@@ -176,22 +176,39 @@ if [[ ${MODE} = "lite_train_lite_infer" ]] || [[ ${MODE} = "lite_train_whole_inf
...
@@ -176,22 +176,39 @@ if [[ ${MODE} = "lite_train_lite_infer" ]] || [[ ${MODE} = "lite_train_whole_inf
mv
val.txt val_list.txt
mv
val.txt val_list.txt
cp
-r
train/
*
val/
cp
-r
train/
*
val/
cd
../../
cd
../../
elif
[[
${
MODE
}
=
"whole_infer"
]]
||
[[
${
MODE
}
=
"klquant_whole_infer"
]]
;
then
elif
[[
${
MODE
}
=
"whole_infer"
]]
;
then
# download data
# download data
cd
dataset
if
[[
${
model_name
}
=
~
"GeneralRecognition"
]]
;
then
rm
-rf
ILSVRC2012
cd
dataset
wget
-nc
https://paddle-imagenet-models-name.bj.bcebos.com/data/whole_chain/whole_chain_infer.tar
rm
-rf
Aliproduct
tar
xf whole_chain_infer.tar
rm
-rf
train_reg_all_data.txt
ln
-s
whole_chain_infer ILSVRC2012
rm
-rf
demo_train
cd
ILSVRC2012
wget
-nc
https://paddle-imagenet-models-name.bj.bcebos.com/data/whole_chain/tipc_shitu_demo_data.tar
--no-check-certificate
mv
val.txt val_list.txt
tar
-xf
tipc_shitu_demo_data.tar
ln
-s
val_list.txt train_list.txt
ln
-s
tipc_shitu_demo_data Aliproduct
cd
../../
ln
-s
tipc_shitu_demo_data/demo_train.txt train_reg_all_data.txt
ln
-s
tipc_shitu_demo_data/demo_train demo_train
cd
tipc_shitu_demo_data
ln
-s
demo_test.txt val_list.txt
cd
../../
else
cd
dataset
rm
-rf
ILSVRC2012
wget
-nc
https://paddle-imagenet-models-name.bj.bcebos.com/data/whole_chain/whole_chain_infer.tar
tar
xf whole_chain_infer.tar
ln
-s
whole_chain_infer ILSVRC2012
cd
ILSVRC2012
mv
val.txt val_list.txt
ln
-s
val_list.txt train_list.txt
cd
../../
fi
# download inference or pretrained model
# download inference or pretrained model
eval
"wget -nc
$model_url_value
"
eval
"wget -nc
$model_url_value
"
if
[[
$model_url_key
==
*
inference
*
]]
;
then
if
[[
${
model_url_value
}
=
~
".tar"
]]
;
then
rm
-rf
inference
tar_name
=
$(
func_get_url_file_name
"
${
model_url_value
}
"
)
tar
xf
"
${
model_name
}
_infer.tar"
echo
$tar_name
rm
-rf
{
tar_name
}
tar
xf
${
tar_name
}
fi
fi
if
[[
$model_name
==
"SwinTransformer_large_patch4_window7_224"
||
$model_name
==
"SwinTransformer_large_patch4_window12_384"
]]
;
then
if
[[
$model_name
==
"SwinTransformer_large_patch4_window7_224"
||
$model_name
==
"SwinTransformer_large_patch4_window12_384"
]]
;
then
cmd
=
"mv
${
model_name
}
_22kto1k_pretrained.pdparams
${
model_name
}
_pretrained.pdparams"
cmd
=
"mv
${
model_name
}
_22kto1k_pretrained.pdparams
${
model_name
}
_pretrained.pdparams"
...
...
test_tipc/test_train_inference_python.sh
浏览文件 @
3ec0edc3
...
@@ -88,17 +88,17 @@ benchmark_value=$(func_parser_value "${lines[49]}")
...
@@ -88,17 +88,17 @@ benchmark_value=$(func_parser_value "${lines[49]}")
infer_key1
=
$(
func_parser_key
"
${
lines
[50]
}
"
)
infer_key1
=
$(
func_parser_key
"
${
lines
[50]
}
"
)
infer_value1
=
$(
func_parser_value
"
${
lines
[50]
}
"
)
infer_value1
=
$(
func_parser_value
"
${
lines
[50]
}
"
)
if
[
!
$epoch_num
]
;
then
if
[
!
$epoch_num
]
;
then
epoch_num
=
2
epoch_num
=
2
fi
fi
if
[[
$MODE
=
'benchmark_train'
]]
;
then
if
[[
$MODE
=
'benchmark_train'
]]
;
then
epoch_num
=
1
epoch_num
=
1
fi
fi
LOG_PATH
=
"./test_tipc/output/
${
model_name
}
"
LOG_PATH
=
"./test_tipc/output/
${
model_name
}
/
${
MODE
}
"
mkdir
-p
${
LOG_PATH
}
mkdir
-p
${
LOG_PATH
}
status_log
=
"
${
LOG_PATH
}
/results_python.log"
status_log
=
"
${
LOG_PATH
}
/results_python.log"
function
func_inference
(){
function
func_inference
()
{
IFS
=
'|'
IFS
=
'|'
_python
=
$1
_python
=
$1
_script
=
$2
_script
=
$2
...
@@ -110,9 +110,6 @@ function func_inference(){
...
@@ -110,9 +110,6 @@ function func_inference(){
for
use_gpu
in
${
use_gpu_list
[*]
}
;
do
for
use_gpu
in
${
use_gpu_list
[*]
}
;
do
if
[
${
use_gpu
}
=
"False"
]
||
[
${
use_gpu
}
=
"cpu"
]
;
then
if
[
${
use_gpu
}
=
"False"
]
||
[
${
use_gpu
}
=
"cpu"
]
;
then
for
use_mkldnn
in
${
use_mkldnn_list
[*]
}
;
do
for
use_mkldnn
in
${
use_mkldnn_list
[*]
}
;
do
if
[
${
use_mkldnn
}
=
"False"
]
&&
[
${
_flag_quant
}
=
"True"
]
;
then
continue
fi
for
threads
in
${
cpu_threads_list
[*]
}
;
do
for
threads
in
${
cpu_threads_list
[*]
}
;
do
for
batch_size
in
${
batch_size_list
[*]
}
;
do
for
batch_size
in
${
batch_size_list
[*]
}
;
do
_save_log_path
=
"
${
_log_path
}
/infer_cpu_usemkldnn_
${
use_mkldnn
}
_threads_
${
threads
}
_batchsize_
${
batch_size
}
.log"
_save_log_path
=
"
${
_log_path
}
/infer_cpu_usemkldnn_
${
use_mkldnn
}
_threads_
${
threads
}
_batchsize_
${
batch_size
}
.log"
...
@@ -136,9 +133,6 @@ function func_inference(){
...
@@ -136,9 +133,6 @@ function func_inference(){
if
[
${
precision
}
=
"True"
]
&&
[
${
use_trt
}
=
"False"
]
;
then
if
[
${
precision
}
=
"True"
]
&&
[
${
use_trt
}
=
"False"
]
;
then
continue
continue
fi
fi
if
[[
${
use_trt
}
=
"False"
||
${
precision
}
=
~
"int8"
]]
&&
[
${
_flag_quant
}
=
"True"
]
;
then
continue
fi
for
batch_size
in
${
batch_size_list
[*]
}
;
do
for
batch_size
in
${
batch_size_list
[*]
}
;
do
_save_log_path
=
"
${
_log_path
}
/infer_gpu_usetrt_
${
use_trt
}
_precision_
${
precision
}
_batchsize_
${
batch_size
}
.log"
_save_log_path
=
"
${
_log_path
}
/infer_gpu_usetrt_
${
use_trt
}
_precision_
${
precision
}
_batchsize_
${
batch_size
}
.log"
set_infer_data
=
$(
func_set_params
"
${
image_dir_key
}
"
"
${
_img_dir
}
"
)
set_infer_data
=
$(
func_set_params
"
${
image_dir_key
}
"
"
${
_img_dir
}
"
)
...
@@ -161,51 +155,23 @@ function func_inference(){
...
@@ -161,51 +155,23 @@ function func_inference(){
done
done
}
}
if
[[
${
MODE
}
=
"whole_infer"
]]
||
[[
${
MODE
}
=
"klquant_whole_infer"
]]
;
then
IFS
=
"|"
infer_export_flag
=(
${
infer_export_flag
}
)
if
[
${
infer_export_flag
}
!=
"null"
]
&&
[
${
infer_export_flag
}
!=
"False"
]
;
then
rm
-rf
${
infer_model_dir_list
/..\//
}
export_cmd
=
"
${
python
}
${
norm_export
}
-o Global.pretrained_model=
${
model_name
}
_pretrained -o Global.save_inference_dir=
${
infer_model_dir_list
/..\//
}
"
eval
$export_cmd
fi
fi
if
[[
${
MODE
}
=
"whole_infer"
]]
;
then
if
[[
${
MODE
}
=
"whole_infer"
]]
;
then
GPUID
=
$3
if
[
${#
GPUID
}
-le
0
]
;
then
env
=
" "
else
env
=
"export CUDA_VISIBLE_DEVICES=
${
GPUID
}
"
fi
# set CUDA_VISIBLE_DEVICES
eval
$env
export
Count
=
0
cd
deploy
for
infer_model
in
${
infer_model_dir_list
[*]
}
;
do
#run inference
is_quant
=
${
infer_quant_flag
[Count]
}
echo
"is_quant:
${
is_quant
}
"
func_inference
"
${
python
}
"
"
${
inference_py
}
"
"
${
infer_model
}
"
"../
${
LOG_PATH
}
"
"
${
infer_img_dir
}
"
${
is_quant
}
Count
=
$((
$Count
+
1
))
done
cd
..
elif
[[
${
MODE
}
=
"klquant_whole_infer"
]]
;
then
# for kl_quant
# for kl_quant
if
[
${
kl_quant_cmd_value
}
!=
"null"
]
&&
[
${
kl_quant_cmd_value
}
!=
"False"
]
;
then
if
[
${
kl_quant_cmd_value
}
!=
"null"
]
&&
[
${
kl_quant_cmd_value
}
!=
"False"
]
;
then
echo
"kl_quant"
echo
"kl_quant"
command
=
"
${
python
}
${
kl_quant_cmd_value
}
"
command
=
"
${
python
}
${
kl_quant_cmd_value
}
"
eval
$command
echo
${
command
}
last_status
=
${
PIPESTATUS
[0]
}
eval
$command
status_check
$last_status
"
${
command
}
"
"
${
status_log
}
"
"
${
model_name
}
"
last_status
=
${
PIPESTATUS
[0]
}
cd
inference/quant_post_static_model
status_check
$last_status
"
${
command
}
"
"
${
status_log
}
"
"
${
model_name
}
"
ln
-s
__model__ inference.pdmodel
cd
${
infer_model_dir_list
}
/quant_post_static_model
ln
-s
__params__ inference.pdiparams
ln
-s
__model__ inference.pdmodel
cd
../../deploy
ln
-s
__params__ inference.pdiparams
is_quant
=
True
cd
../../deploy
func_inference
"
${
python
}
"
"
${
inference_py
}
"
"
${
infer_model_dir_list
}
/quant_post_static_model"
"../
${
LOG_PATH
}
"
"
${
infer_img_dir
}
"
${
is_quant
}
is_quant
=
True
cd
..
func_inference
"
${
python
}
"
"
${
inference_py
}
"
"../
${
infer_model_dir_list
}
/quant_post_static_model"
"../
${
LOG_PATH
}
"
"
${
infer_img_dir
}
"
${
is_quant
}
cd
..
fi
fi
else
else
IFS
=
"|"
IFS
=
"|"
...
@@ -215,12 +181,12 @@ else
...
@@ -215,12 +181,12 @@ else
train_use_gpu
=
${
USE_GPU_KEY
[Count]
}
train_use_gpu
=
${
USE_GPU_KEY
[Count]
}
Count
=
$((
$Count
+
1
))
Count
=
$((
$Count
+
1
))
ips
=
""
ips
=
""
if
[
${
gpu
}
=
"-1"
]
;
then
if
[
${
gpu
}
=
"-1"
]
;
then
env
=
""
env
=
""
elif
[
${#
gpu
}
-le
1
]
;
then
elif
[
${#
gpu
}
-le
1
]
;
then
env
=
"export CUDA_VISIBLE_DEVICES=
${
gpu
}
"
env
=
"export CUDA_VISIBLE_DEVICES=
${
gpu
}
"
eval
${
env
}
eval
${
env
}
elif
[
${#
gpu
}
-le
15
]
;
then
elif
[
${#
gpu
}
-le
15
]
;
then
IFS
=
","
IFS
=
","
array
=(
${
gpu
}
)
array
=(
${
gpu
}
)
env
=
"export CUDA_VISIBLE_DEVICES=
${
array
[0]
}
"
env
=
"export CUDA_VISIBLE_DEVICES=
${
array
[0]
}
"
...
@@ -270,7 +236,7 @@ else
...
@@ -270,7 +236,7 @@ else
set_batchsize
=
$(
func_set_params
"
${
train_batch_key
}
"
"
${
train_batch_value
}
"
)
set_batchsize
=
$(
func_set_params
"
${
train_batch_key
}
"
"
${
train_batch_value
}
"
)
set_train_params1
=
$(
func_set_params
"
${
train_param_key1
}
"
"
${
train_param_value1
}
"
)
set_train_params1
=
$(
func_set_params
"
${
train_param_key1
}
"
"
${
train_param_value1
}
"
)
set_use_gpu
=
$(
func_set_params
"
${
train_use_gpu_key
}
"
"
${
train_use_gpu_value
}
"
)
set_use_gpu
=
$(
func_set_params
"
${
train_use_gpu_key
}
"
"
${
train_use_gpu_value
}
"
)
if
[
${#
ips
}
-le
15
]
;
then
if
[
${#
ips
}
-le
15
]
;
then
# if length of ips >= 15, then it is seen as multi-machine
# if length of ips >= 15, then it is seen as multi-machine
# 15 is the min length of ips info for multi-machine: 0.0.0.0,0.0.0.0
# 15 is the min length of ips info for multi-machine: 0.0.0.0,0.0.0.0
save_log
=
"
${
LOG_PATH
}
/
${
trainer
}
_gpus_
${
gpu
}
_autocast_
${
autocast
}
"
save_log
=
"
${
LOG_PATH
}
/
${
trainer
}
_gpus_
${
gpu
}
_autocast_
${
autocast
}
"
...
@@ -289,26 +255,26 @@ else
...
@@ -289,26 +255,26 @@ else
# fi
# fi
set_save_model
=
$(
func_set_params
"
${
save_model_key
}
"
"
${
save_log
}
"
)
set_save_model
=
$(
func_set_params
"
${
save_model_key
}
"
"
${
save_log
}
"
)
if
[
${#
gpu
}
-le
2
]
;
then
# train with cpu or single gpu
if
[
${#
gpu
}
-le
2
]
;
then
# train with cpu or single gpu
cmd
=
"
${
python
}
${
run_train
}
${
set_use_gpu
}
${
set_save_model
}
${
set_epoch
}
${
set_pretrain
}
${
set_autocast
}
${
set_batchsize
}
${
set_train_params1
}
"
cmd
=
"
${
python
}
${
run_train
}
${
set_use_gpu
}
${
set_save_model
}
${
set_epoch
}
${
set_pretrain
}
${
set_autocast
}
${
set_batchsize
}
${
set_train_params1
}
"
elif
[
${#
ips
}
-le
15
]
;
then
# train with multi-gpu
elif
[
${#
ips
}
-le
15
]
;
then
# train with multi-gpu
cmd
=
"
${
python
}
-m paddle.distributed.launch --gpus=
${
gpu
}
${
run_train
}
${
set_use_gpu
}
${
set_save_model
}
${
set_epoch
}
${
set_pretrain
}
${
set_autocast
}
${
set_batchsize
}
${
set_train_params1
}
"
cmd
=
"
${
python
}
-m paddle.distributed.launch --gpus=
${
gpu
}
${
run_train
}
${
set_use_gpu
}
${
set_save_model
}
${
set_epoch
}
${
set_pretrain
}
${
set_autocast
}
${
set_batchsize
}
${
set_train_params1
}
"
else
# train with multi-machine
else
# train with multi-machine
cmd
=
"
${
python
}
-m paddle.distributed.launch --ips=
${
ips
}
--gpus=
${
gpu
}
${
run_train
}
${
set_use_gpu
}
${
set_save_model
}
${
set_pretrain
}
${
set_epoch
}
${
set_autocast
}
${
set_batchsize
}
${
set_train_params1
}
"
cmd
=
"
${
python
}
-m paddle.distributed.launch --ips=
${
ips
}
--gpus=
${
gpu
}
${
run_train
}
${
set_use_gpu
}
${
set_save_model
}
${
set_pretrain
}
${
set_epoch
}
${
set_autocast
}
${
set_batchsize
}
${
set_train_params1
}
"
fi
fi
# run train
# run train
eval
"unset CUDA_VISIBLE_DEVICES"
eval
"unset CUDA_VISIBLE_DEVICES"
# export FLAGS_cudnn_deterministic=True
# export FLAGS_cudnn_deterministic=True
sleep
5
sleep
5
eval
$cmd
eval
$cmd
status_check
$?
"
${
cmd
}
"
"
${
status_log
}
"
"
${
model_name
}
"
status_check
$?
"
${
cmd
}
"
"
${
status_log
}
"
"
${
model_name
}
"
sleep
5
sleep
5
if
[[
$FILENAME
==
*
GeneralRecognition
*
]]
;
then
if
[[
$FILENAME
==
*
GeneralRecognition
*
]]
;
then
set_eval_pretrain
=
$(
func_set_params
"
${
pretrain_model_key
}
"
"
${
save_log
}
/RecModel/
${
train_model_name
}
"
)
set_eval_pretrain
=
$(
func_set_params
"
${
pretrain_model_key
}
"
"
${
save_log
}
/RecModel/
${
train_model_name
}
"
)
else
else
set_eval_pretrain
=
$(
func_set_params
"
${
pretrain_model_key
}
"
"
${
save_log
}
/
${
model_name
}
/
${
train_model_name
}
"
)
set_eval_pretrain
=
$(
func_set_params
"
${
pretrain_model_key
}
"
"
${
save_log
}
/
${
model_name
}
/
${
train_model_name
}
"
)
fi
fi
# save norm trained models to set pretrain for pact training and fpgm training
# save norm trained models to set pretrain for pact training and fpgm training
if
[
${
trainer
}
=
${
trainer_norm
}
]
;
then
if
[
${
trainer
}
=
${
trainer_norm
}
]
;
then
load_norm_train_model
=
${
set_eval_pretrain
}
load_norm_train_model
=
${
set_eval_pretrain
}
...
@@ -325,11 +291,11 @@ else
...
@@ -325,11 +291,11 @@ else
if
[
${
run_export
}
!=
"null"
]
;
then
if
[
${
run_export
}
!=
"null"
]
;
then
# run export model
# run export model
save_infer_path
=
"
${
save_log
}
"
save_infer_path
=
"
${
save_log
}
"
if
[[
$FILENAME
==
*
GeneralRecognition
*
]]
;
then
if
[[
$FILENAME
==
*
GeneralRecognition
*
]]
;
then
set_eval_pretrain
=
$(
func_set_params
"
${
pretrain_model_key
}
"
"
${
save_log
}
/RecModel/
${
train_model_name
}
"
)
set_eval_pretrain
=
$(
func_set_params
"
${
pretrain_model_key
}
"
"
${
save_log
}
/RecModel/
${
train_model_name
}
"
)
else
else
set_export_weight
=
$(
func_set_params
"
${
export_weight
}
"
"
${
save_log
}
/
${
model_name
}
/
${
train_model_name
}
"
)
set_export_weight
=
$(
func_set_params
"
${
export_weight
}
"
"
${
save_log
}
/
${
model_name
}
/
${
train_model_name
}
"
)
fi
fi
set_save_infer_key
=
$(
func_set_params
"
${
save_infer_key
}
"
"
${
save_infer_path
}
"
)
set_save_infer_key
=
$(
func_set_params
"
${
save_infer_key
}
"
"
${
save_infer_path
}
"
)
export_cmd
=
"
${
python
}
${
run_export
}
${
set_export_weight
}
${
set_save_infer_key
}
"
export_cmd
=
"
${
python
}
${
run_export
}
${
set_export_weight
}
${
set_save_infer_key
}
"
eval
$export_cmd
eval
$export_cmd
...
@@ -338,12 +304,12 @@ else
...
@@ -338,12 +304,12 @@ else
#run inference
#run inference
eval
$env
eval
$env
save_infer_path
=
"
${
save_log
}
"
save_infer_path
=
"
${
save_log
}
"
cd
deploy
cd
deploy
func_inference
"
${
python
}
"
"
${
inference_py
}
"
"../
${
save_infer_path
}
"
"../
${
LOG_PATH
}
"
"
${
infer_img_dir
}
"
"
${
flag_quant
}
"
func_inference
"
${
python
}
"
"
${
inference_py
}
"
"../
${
save_infer_path
}
"
"../
${
LOG_PATH
}
"
"
${
infer_img_dir
}
"
"
${
flag_quant
}
"
cd
..
cd
..
fi
fi
eval
"unset CUDA_VISIBLE_DEVICES"
eval
"unset CUDA_VISIBLE_DEVICES"
done
# done with: for trainer in ${trainer_list[*]}; do
done
# done with: for trainer in ${trainer_list[*]}; do
done
# done with: for autocast in ${autocast_list[*]}; do
done
# done with: for autocast in ${autocast_list[*]}; do
done
# done with: for gpu in ${gpu_list[*]}; do
done
# done with: for gpu in ${gpu_list[*]}; do
fi
# end if [ ${MODE} = "infer" ]; then
fi
# end if [ ${MODE} = "infer" ]; then
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录