Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
3d53d8b9
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3d53d8b9
编写于
6月 09, 2022
作者:
C
cuicheng01
提交者:
GitHub
6月 09, 2022
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1971 from cuicheng01/Add_PULC_demo
[WIP]Add pulc demo
上级
06b66a83
f99b1ec5
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
1528 addition
and
28 deletion
+1528
-28
ppcls/arch/backbone/legendary_models/pp_lcnet.py
ppcls/arch/backbone/legendary_models/pp_lcnet.py
+34
-15
ppcls/arch/backbone/legendary_models/resnet.py
ppcls/arch/backbone/legendary_models/resnet.py
+23
-13
ppcls/configs/PULC/person_attribute/MobileNetV3_large_x1_0.yaml
...configs/PULC/person_attribute/MobileNetV3_large_x1_0.yaml
+115
-0
ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml
ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml
+129
-0
ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_Distillation.yaml
...figs/PULC/person_attribute/PPLCNet_x1_0_Distillation.yaml
+154
-0
ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_search.yaml
ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_search.yaml
+129
-0
ppcls/configs/PULC/person_attribute/Res2Net200_vd_26w_4s.yaml
...s/configs/PULC/person_attribute/Res2Net200_vd_26w_4s.yaml
+115
-0
ppcls/configs/PULC/person_attribute/search.yaml
ppcls/configs/PULC/person_attribute/search.yaml
+41
-0
ppcls/configs/PULC/text_direction/MobileNetV3_large_x1_0.yaml
...s/configs/PULC/text_direction/MobileNetV3_large_x1_0.yaml
+134
-0
ppcls/configs/PULC/text_direction/PPLCNet_x1_0.yaml
ppcls/configs/PULC/text_direction/PPLCNet_x1_0.yaml
+143
-0
ppcls/configs/PULC/text_direction/PPLCNet_x1_0_distillation.yaml
...onfigs/PULC/text_direction/PPLCNet_x1_0_distillation.yaml
+162
-0
ppcls/configs/PULC/text_direction/PPLCNet_x1_0_search.yaml
ppcls/configs/PULC/text_direction/PPLCNet_x1_0_search.yaml
+144
-0
ppcls/configs/PULC/text_direction/SwinTransformer_tiny_patch4_window7_224.yaml
...xt_direction/SwinTransformer_tiny_patch4_window7_224.yaml
+164
-0
ppcls/configs/PULC/text_direction/search.yaml
ppcls/configs/PULC/text_direction/search.yaml
+41
-0
未找到文件。
ppcls/arch/backbone/legendary_models/pp_lcnet.py
浏览文件 @
3d53d8b9
...
...
@@ -189,6 +189,7 @@ class PPLCNet(TheseusLayer):
dropout_prob
=
0.2
,
class_expand
=
1280
,
lr_mult_list
=
[
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
],
stride_list
=
[
2
,
2
,
2
,
2
,
2
],
use_last_conv
=
True
,
return_patterns
=
None
,
return_stages
=
None
,
...
...
@@ -198,6 +199,8 @@ class PPLCNet(TheseusLayer):
self
.
class_expand
=
class_expand
self
.
lr_mult_list
=
lr_mult_list
self
.
use_last_conv
=
use_last_conv
self
.
stride_list
=
stride_list
self
.
net_config
=
NET_CONFIG
if
isinstance
(
self
.
lr_mult_list
,
str
):
self
.
lr_mult_list
=
eval
(
self
.
lr_mult_list
)
...
...
@@ -206,17 +209,27 @@ class PPLCNet(TheseusLayer):
)),
"lr_mult_list should be in (list, tuple) but got {}"
.
format
(
type
(
self
.
lr_mult_list
))
assert
len
(
self
.
lr_mult_list
)
==
6
,
"lr_mult_list length should be
5
but got {}"
.
format
(
)
==
6
,
"lr_mult_list length should be
6
but got {}"
.
format
(
len
(
self
.
lr_mult_list
))
assert
isinstance
(
self
.
stride_list
,
(
list
,
tuple
)),
"stride_list should be in (list, tuple) but got {}"
.
format
(
type
(
self
.
stride_list
))
assert
len
(
self
.
stride_list
)
==
5
,
"stride_list length should be 5 but got {}"
.
format
(
len
(
self
.
stride_list
))
for
i
,
stride
in
enumerate
(
stride_list
[
1
:]):
self
.
net_config
[
"blocks{}"
.
format
(
i
+
3
)][
0
][
3
]
=
stride
self
.
conv1
=
ConvBNLayer
(
num_channels
=
3
,
filter_size
=
3
,
num_filters
=
make_divisible
(
16
*
scale
),
stride
=
2
,
stride
=
stride_list
[
0
]
,
lr_mult
=
self
.
lr_mult_list
[
0
])
self
.
blocks2
=
nn
.
Sequential
(
*
[
self
.
blocks2
=
nn
.
Sequential
(
*
[
DepthwiseSeparable
(
num_channels
=
make_divisible
(
in_c
*
scale
),
num_filters
=
make_divisible
(
out_c
*
scale
),
...
...
@@ -224,10 +237,11 @@ class PPLCNet(TheseusLayer):
stride
=
s
,
use_se
=
se
,
lr_mult
=
self
.
lr_mult_list
[
1
])
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
NET_CONFIG
[
"blocks2"
])
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
self
.
net_config
[
"blocks2"
])
])
self
.
blocks3
=
nn
.
Sequential
(
*
[
self
.
blocks3
=
nn
.
Sequential
(
*
[
DepthwiseSeparable
(
num_channels
=
make_divisible
(
in_c
*
scale
),
num_filters
=
make_divisible
(
out_c
*
scale
),
...
...
@@ -235,10 +249,11 @@ class PPLCNet(TheseusLayer):
stride
=
s
,
use_se
=
se
,
lr_mult
=
self
.
lr_mult_list
[
2
])
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
NET_CONFIG
[
"blocks3"
])
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
self
.
net_config
[
"blocks3"
])
])
self
.
blocks4
=
nn
.
Sequential
(
*
[
self
.
blocks4
=
nn
.
Sequential
(
*
[
DepthwiseSeparable
(
num_channels
=
make_divisible
(
in_c
*
scale
),
num_filters
=
make_divisible
(
out_c
*
scale
),
...
...
@@ -246,10 +261,11 @@ class PPLCNet(TheseusLayer):
stride
=
s
,
use_se
=
se
,
lr_mult
=
self
.
lr_mult_list
[
3
])
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
NET_CONFIG
[
"blocks4"
])
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
self
.
net_config
[
"blocks4"
])
])
self
.
blocks5
=
nn
.
Sequential
(
*
[
self
.
blocks5
=
nn
.
Sequential
(
*
[
DepthwiseSeparable
(
num_channels
=
make_divisible
(
in_c
*
scale
),
num_filters
=
make_divisible
(
out_c
*
scale
),
...
...
@@ -257,10 +273,11 @@ class PPLCNet(TheseusLayer):
stride
=
s
,
use_se
=
se
,
lr_mult
=
self
.
lr_mult_list
[
4
])
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
NET_CONFIG
[
"blocks5"
])
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
self
.
net_config
[
"blocks5"
])
])
self
.
blocks6
=
nn
.
Sequential
(
*
[
self
.
blocks6
=
nn
.
Sequential
(
*
[
DepthwiseSeparable
(
num_channels
=
make_divisible
(
in_c
*
scale
),
num_filters
=
make_divisible
(
out_c
*
scale
),
...
...
@@ -268,13 +285,14 @@ class PPLCNet(TheseusLayer):
stride
=
s
,
use_se
=
se
,
lr_mult
=
self
.
lr_mult_list
[
5
])
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
NET_CONFIG
[
"blocks6"
])
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
self
.
net_config
[
"blocks6"
])
])
self
.
avg_pool
=
AdaptiveAvgPool2D
(
1
)
if
self
.
use_last_conv
:
self
.
last_conv
=
Conv2D
(
in_channels
=
make_divisible
(
NET_CONFIG
[
"blocks6"
][
-
1
][
2
]
*
in_channels
=
make_divisible
(
self
.
net_config
[
"blocks6"
][
-
1
][
2
]
*
scale
),
out_channels
=
self
.
class_expand
,
kernel_size
=
1
,
...
...
@@ -286,8 +304,9 @@ class PPLCNet(TheseusLayer):
else
:
self
.
last_conv
=
None
self
.
flatten
=
nn
.
Flatten
(
start_axis
=
1
,
stop_axis
=-
1
)
self
.
fc
=
Linear
(
self
.
class_expand
if
self
.
use_last_conv
else
NET_CONFIG
[
"blocks6"
][
-
1
][
2
],
class_num
)
self
.
fc
=
Linear
(
self
.
class_expand
if
self
.
use_last_conv
else
make_divisible
(
self
.
net_config
[
"blocks6"
][
-
1
][
2
]),
class_num
)
super
().
init_res
(
stages_pattern
,
...
...
ppcls/arch/backbone/legendary_models/resnet.py
浏览文件 @
3d53d8b9
...
...
@@ -122,21 +122,18 @@ class ConvBNLayer(TheseusLayer):
self
.
is_vd_mode
=
is_vd_mode
self
.
act
=
act
self
.
avg_pool
=
AvgPool2D
(
kernel_size
=
2
,
stride
=
2
,
padding
=
0
,
ceil_mode
=
True
)
kernel_size
=
2
,
stride
=
stride
,
padding
=
"SAME"
,
ceil_mode
=
True
)
self
.
conv
=
Conv2D
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
stride
=
1
if
is_vd_mode
else
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
learning_rate
=
lr_mult
),
bias_attr
=
False
,
data_format
=
data_format
)
weight_attr
=
ParamAttr
(
learning_rate
=
lr_mult
,
trainable
=
True
)
bias_attr
=
ParamAttr
(
learning_rate
=
lr_mult
,
trainable
=
True
)
self
.
bn
=
BatchNorm
(
num_filters
,
param_attr
=
ParamAttr
(
learning_rate
=
lr_mult
),
...
...
@@ -164,7 +161,6 @@ class BottleneckBlock(TheseusLayer):
lr_mult
=
1.0
,
data_format
=
"NCHW"
):
super
().
__init__
()
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
...
...
@@ -193,7 +189,7 @@ class BottleneckBlock(TheseusLayer):
num_channels
=
num_channels
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
stride
=
stride
if
if_first
else
1
,
stride
=
stride
,
is_vd_mode
=
False
if
if_first
else
True
,
lr_mult
=
lr_mult
,
data_format
=
data_format
)
...
...
@@ -248,7 +244,7 @@ class BasicBlock(TheseusLayer):
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
stride
=
stride
if
if_first
else
1
,
stride
=
stride
,
is_vd_mode
=
False
if
if_first
else
True
,
lr_mult
=
lr_mult
,
data_format
=
data_format
)
...
...
@@ -287,6 +283,7 @@ class ResNet(TheseusLayer):
stem_act
=
"relu"
,
class_num
=
1000
,
lr_mult_list
=
[
1.0
,
1.0
,
1.0
,
1.0
,
1.0
],
stride_list
=
[
2
,
2
,
2
,
2
,
2
],
data_format
=
"NCHW"
,
input_image_channel
=
3
,
return_patterns
=
None
,
...
...
@@ -296,6 +293,7 @@ class ResNet(TheseusLayer):
self
.
cfg
=
config
self
.
lr_mult_list
=
lr_mult_list
self
.
stride_list
=
stride_list
self
.
is_vd_mode
=
version
==
"vd"
self
.
class_num
=
class_num
self
.
num_filters
=
[
64
,
128
,
256
,
512
]
...
...
@@ -312,11 +310,19 @@ class ResNet(TheseusLayer):
)
==
5
,
"lr_mult_list length should be 5 but got {}"
.
format
(
len
(
self
.
lr_mult_list
))
assert
isinstance
(
self
.
stride_list
,
(
list
,
tuple
)),
"stride_list should be in (list, tuple) but got {}"
.
format
(
type
(
self
.
stride_list
))
assert
len
(
self
.
stride_list
)
==
5
,
"stride_list length should be 5 but got {}"
.
format
(
len
(
self
.
stride_list
))
self
.
stem_cfg
=
{
#num_channels, num_filters, filter_size, stride
"vb"
:
[[
input_image_channel
,
64
,
7
,
2
]],
"vd"
:
[[
input_image_channel
,
32
,
3
,
2
],
[
32
,
32
,
3
,
1
],
[
32
,
64
,
3
,
1
]]
"vb"
:
[[
input_image_channel
,
64
,
7
,
self
.
stride_list
[
0
]
]],
"vd"
:
[[
input_image_channel
,
32
,
3
,
self
.
stride_list
[
0
]],
[
32
,
32
,
3
,
1
],
[
32
,
64
,
3
,
1
]]
}
self
.
stem
=
nn
.
Sequential
(
*
[
...
...
@@ -332,7 +338,10 @@ class ResNet(TheseusLayer):
])
self
.
max_pool
=
MaxPool2D
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
,
data_format
=
data_format
)
kernel_size
=
3
,
stride
=
stride_list
[
1
],
padding
=
1
,
data_format
=
data_format
)
block_list
=
[]
for
block_idx
in
range
(
len
(
self
.
block_depth
)):
shortcut
=
False
...
...
@@ -341,7 +350,8 @@ class ResNet(TheseusLayer):
num_channels
=
self
.
num_channels
[
block_idx
]
if
i
==
0
else
self
.
num_filters
[
block_idx
]
*
self
.
channels_mult
,
num_filters
=
self
.
num_filters
[
block_idx
],
stride
=
2
if
i
==
0
and
block_idx
!=
0
else
1
,
stride
=
self
.
stride_list
[
block_idx
+
1
]
if
i
==
0
and
block_idx
!=
0
else
1
,
shortcut
=
shortcut
,
if_first
=
block_idx
==
i
==
0
if
version
==
"vd"
else
True
,
lr_mult
=
self
.
lr_mult_list
[
block_idx
+
1
],
...
...
ppcls/configs/PULC/person_attribute/MobileNetV3_large_x1_0.yaml
0 → 100644
浏览文件 @
3d53d8b9
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
"
./output/"
device
:
"
gpu"
save_interval
:
5
eval_during_train
:
True
eval_interval
:
1
epochs
:
20
print_batch_step
:
20
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
256
,
192
]
save_inference_dir
:
"
./inference"
use_multilabel
:
True
# model architecture
Arch
:
name
:
"
MobileNetV3_large_x1_0"
pretrained
:
True
class_num
:
26
# loss function config for traing/eval process
Loss
:
Train
:
-
MultiLabelLoss
:
weight
:
1.0
weight_ratio
:
True
size_sum
:
True
Eval
:
-
MultiLabelLoss
:
weight
:
1.0
weight_ratio
:
True
size_sum
:
True
Optimizer
:
name
:
Momentum
momentum
:
0.9
lr
:
name
:
Cosine
learning_rate
:
0.01
warmup_epoch
:
5
regularizer
:
name
:
'
L2'
coeff
:
0.0005
#clip_norm: 10
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
MultiLabelDataset
image_root
:
"
dataset/pa100k/"
cls_label_path
:
"
dataset/pa100k/train_val_list.txt"
label_ratio
:
True
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
192
,
256
]
-
Padv2
:
size
:
[
212
,
276
]
pad_mode
:
1
fill_value
:
0
-
RandomCropImage
:
size
:
[
192
,
256
]
-
RandFlipImage
:
flip_code
:
1
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
True
shuffle
:
True
loader
:
num_workers
:
4
use_shared_memory
:
True
Eval
:
dataset
:
name
:
MultiLabelDataset
image_root
:
"
dataset/pa100k/"
cls_label_path
:
"
dataset/pa100k/test_list.txt"
label_ratio
:
True
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
192
,
256
]
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
4
use_shared_memory
:
True
Metric
:
Eval
:
-
ATTRMetric
:
ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml
0 → 100644
浏览文件 @
3d53d8b9
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
"
./output/"
device
:
"
gpu"
save_interval
:
1
eval_during_train
:
True
eval_interval
:
1
epochs
:
20
print_batch_step
:
10
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
256
,
192
]
save_inference_dir
:
"
./inference"
use_multilabel
:
True
# model architecture
Arch
:
name
:
"
PPLCNet_x1_0"
pretrained
:
True
use_ssld
:
True
class_num
:
26
# loss function config for traing/eval process
Loss
:
Train
:
-
MultiLabelLoss
:
weight
:
1.0
weight_ratio
:
True
size_sum
:
True
Eval
:
-
MultiLabelLoss
:
weight
:
1.0
weight_ratio
:
True
size_sum
:
True
Optimizer
:
name
:
Momentum
momentum
:
0.9
lr
:
name
:
Cosine
learning_rate
:
0.01
warmup_epoch
:
5
regularizer
:
name
:
'
L2'
coeff
:
0.0005
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
MultiLabelDataset
image_root
:
"
dataset/pa100k/"
cls_label_path
:
"
dataset/pa100k/train_val_list.txt"
label_ratio
:
True
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
192
,
256
]
-
TimmAutoAugment
:
prob
:
0.8
config_str
:
rand-m9-mstd0.5-inc1
interpolation
:
bicubic
img_size
:
[
192
,
256
]
-
Padv2
:
size
:
[
212
,
276
]
pad_mode
:
1
fill_value
:
0
-
RandomCropImage
:
size
:
[
192
,
256
]
-
RandFlipImage
:
flip_code
:
1
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
RandomErasing
:
EPSILON
:
0.4
sl
:
0.02
sh
:
1.0/3.0
r1
:
0.3
attempt
:
10
use_log_aspect
:
True
mode
:
pixel
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
True
shuffle
:
True
loader
:
num_workers
:
4
use_shared_memory
:
True
Eval
:
dataset
:
name
:
MultiLabelDataset
image_root
:
"
dataset/pa100k/"
cls_label_path
:
"
dataset/pa100k/test_list.txt"
label_ratio
:
True
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
192
,
256
]
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
4
use_shared_memory
:
True
Metric
:
Eval
:
-
ATTRMetric
:
ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_Distillation.yaml
0 → 100644
浏览文件 @
3d53d8b9
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
./output
device
:
gpu
save_interval
:
1
eval_during_train
:
True
start_eval_epoch
:
1
eval_interval
:
1
epochs
:
20
print_batch_step
:
10
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
256
,
192
]
save_inference_dir
:
./inference
# training model under @to_static
to_static
:
False
use_dali
:
False
use_multilabel
:
True
# model architecture
Arch
:
name
:
"
DistillationModel"
class_num
:
&class_num
26
# if not null, its lengths should be same as models
pretrained_list
:
# if not null, its lengths should be same as models
freeze_params_list
:
-
True
-
False
use_sync_bn
:
True
models
:
-
Teacher
:
name
:
ResNet101_vd
class_num
:
*class_num
-
Student
:
name
:
PPLCNet_x1_0
class_num
:
*class_num
pretrained
:
True
use_ssld
:
True
infer_model_name
:
"
Student"
# loss function config for traing/eval process
Loss
:
Train
:
-
DistillationDMLLoss
:
weight
:
1.0
model_name_pairs
:
-
[
"
Student"
,
"
Teacher"
]
-
DistillationMultiLabelLoss
:
weight
:
1.0
weight_ratio
:
True
model_names
:
[
"
Student"
]
size_sum
:
True
Eval
:
-
MultiLabelLoss
:
weight
:
1.0
weight_ratio
:
True
size_sum
:
True
Optimizer
:
name
:
Momentum
momentum
:
0.9
lr
:
name
:
Cosine
learning_rate
:
0.01
warmup_epoch
:
5
regularizer
:
name
:
'
L2'
coeff
:
0.0005
# data loader for train and eval
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
MultiLabelDataset
image_root
:
"
dataset/pa100k/"
cls_label_path
:
"
dataset/pa100k/train_val_list.txt"
label_ratio
:
True
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
192
,
256
]
-
TimmAutoAugment
:
prob
:
0.8
config_str
:
rand-m9-mstd0.5-inc1
interpolation
:
bicubic
img_size
:
[
192
,
256
]
-
Padv2
:
size
:
[
212
,
276
]
pad_mode
:
1
fill_value
:
0
-
RandomCropImage
:
size
:
[
192
,
256
]
-
RandFlipImage
:
flip_code
:
1
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
RandomErasing
:
EPSILON
:
0.4
sl
:
0.02
sh
:
1.0/3.0
r1
:
0.3
attempt
:
10
use_log_aspect
:
True
mode
:
pixel
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
True
shuffle
:
True
loader
:
num_workers
:
4
use_shared_memory
:
True
Eval
:
dataset
:
name
:
MultiLabelDataset
image_root
:
"
dataset/pa100k/"
cls_label_path
:
"
dataset/pa100k/test_list.txt"
label_ratio
:
True
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
192
,
256
]
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
4
use_shared_memory
:
True
Metric
:
Eval
:
-
ATTRMetric
:
ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_search.yaml
0 → 100644
浏览文件 @
3d53d8b9
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
"
./output/"
device
:
"
gpu"
save_interval
:
1
eval_during_train
:
True
eval_interval
:
1
epochs
:
20
print_batch_step
:
10
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
256
,
192
]
save_inference_dir
:
"
./inference"
use_multilabel
:
True
# model architecture
Arch
:
name
:
"
PPLCNet_x1_0"
pretrained
:
True
use_ssld
:
True
class_num
:
26
# loss function config for traing/eval process
Loss
:
Train
:
-
MultiLabelLoss
:
weight
:
1.0
weight_ratio
:
True
size_sum
:
True
Eval
:
-
MultiLabelLoss
:
weight
:
1.0
weight_ratio
:
True
size_sum
:
True
Optimizer
:
name
:
Momentum
momentum
:
0.9
lr
:
name
:
Cosine
learning_rate
:
0.01
warmup_epoch
:
5
regularizer
:
name
:
'
L2'
coeff
:
0.0005
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
MultiLabelDataset
image_root
:
"
dataset/pa100k/"
cls_label_path
:
"
dataset/pa100k/train_val_list.txt"
label_ratio
:
True
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
192
,
256
]
-
TimmAutoAugment
:
prob
:
0.0
config_str
:
rand-m9-mstd0.5-inc1
interpolation
:
bicubic
img_size
:
[
192
,
256
]
-
Padv2
:
size
:
[
212
,
276
]
pad_mode
:
1
fill_value
:
0
-
RandomCropImage
:
size
:
[
192
,
256
]
-
RandFlipImage
:
flip_code
:
1
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
RandomErasing
:
EPSILON
:
0.0
sl
:
0.02
sh
:
1.0/3.0
r1
:
0.3
attempt
:
10
use_log_aspect
:
True
mode
:
pixel
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
True
shuffle
:
True
loader
:
num_workers
:
4
use_shared_memory
:
True
Eval
:
dataset
:
name
:
MultiLabelDataset
image_root
:
"
dataset/pa100k"
cls_label_path
:
"
dataset/pa100k/test_list.txt"
label_ratio
:
True
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
192
,
256
]
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
4
use_shared_memory
:
True
Metric
:
Eval
:
-
ATTRMetric
:
ppcls/configs/PULC/person_attribute/Res2Net200_vd_26w_4s.yaml
0 → 100644
浏览文件 @
3d53d8b9
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
"
./output/"
device
:
"
gpu"
save_interval
:
5
eval_during_train
:
True
eval_interval
:
1
epochs
:
20
print_batch_step
:
20
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
256
,
192
]
save_inference_dir
:
"
./inference"
use_multilabel
:
True
# model architecture
Arch
:
name
:
"
Res2Net200_vd_26w_4s"
pretrained
:
True
class_num
:
26
# loss function config for traing/eval process
Loss
:
Train
:
-
MultiLabelLoss
:
weight
:
1.0
weight_ratio
:
True
size_sum
:
True
Eval
:
-
MultiLabelLoss
:
weight
:
1.0
weight_ratio
:
True
size_sum
:
True
Optimizer
:
name
:
Momentum
momentum
:
0.9
lr
:
name
:
Cosine
learning_rate
:
0.01
warmup_epoch
:
5
regularizer
:
name
:
'
L2'
coeff
:
0.0005
#clip_norm: 10
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
MultiLabelDataset
image_root
:
"
dataset/pa100k/"
cls_label_path
:
"
dataset/pa100k/train_val_list.txt"
label_ratio
:
True
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
192
,
256
]
-
Padv2
:
size
:
[
212
,
276
]
pad_mode
:
1
fill_value
:
0
-
RandomCropImage
:
size
:
[
192
,
256
]
-
RandFlipImage
:
flip_code
:
1
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
True
shuffle
:
True
loader
:
num_workers
:
4
use_shared_memory
:
True
Eval
:
dataset
:
name
:
MultiLabelDataset
image_root
:
"
dataset/pa100k/"
cls_label_path
:
"
dataset/pa100k/test_list.txt"
label_ratio
:
True
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
192
,
256
]
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
4
use_shared_memory
:
True
Metric
:
Eval
:
-
ATTRMetric
:
ppcls/configs/PULC/person_attribute/search.yaml
0 → 100644
浏览文件 @
3d53d8b9
base_config_file
:
ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_search.yaml
distill_config_file
:
ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_Distillation.yaml
gpus
:
0,1,2,3
output_dir
:
output/search_attr
search_times
:
1
search_dict
:
-
search_key
:
lrs
replace_config
:
-
Optimizer.lr.learning_rate
search_values
:
[
0.0001
,
0.005
,
0.01
,
0.02
,
0.05
]
-
search_key
:
resolutions
replace_config
:
-
DataLoader.Train.dataset.transform_ops.1.ResizeImage.size
-
DataLoader.Train.dataset.transform_ops.4.RandomCropImage.size
-
DataLoader.Train.dataset.transform_ops.2.TimmAutoAugment.img_size
search_values
:
[[
192
,
256
]]
-
search_key
:
ra_probs
replace_config
:
-
DataLoader.Train.dataset.transform_ops.2.TimmAutoAugment.prob
search_values
:
[
0.0
,
0.2
,
0.4
,
0.6
,
0.8
,
1.0
]
-
search_key
:
re_probs
replace_config
:
-
DataLoader.Train.dataset.transform_ops.7.RandomErasing.EPSILON
search_values
:
[
0.0
,
0.2
,
0.4
,
0.6
,
0.8
,
1.0
]
-
search_key
:
lr_mult_list
replace_config
:
-
Arch.lr_mult_list
search_values
:
-
[
0.0
,
0.2
,
0.4
,
0.6
,
0.8
,
1.0
]
-
[
0.0
,
0.4
,
0.4
,
0.8
,
0.8
,
1.0
]
-
[
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
]
teacher
:
rm_keys
:
-
Arch.lr_mult_list
search_values
:
-
ResNet101_vd
-
ResNet50_vd
final_replace
:
Arch.lr_mult_list
:
Arch.models.1.Student.lr_mult_list
ppcls/configs/PULC/text_direction/MobileNetV3_large_x1_0.yaml
0 → 100644
浏览文件 @
3d53d8b9
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
./output/
device
:
gpu
save_interval
:
1
eval_during_train
:
True
eval_interval
:
1
start_eval_epoch
:
18
epochs
:
20
print_batch_step
:
10
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
224
,
224
]
save_inference_dir
:
./inference
# training model under @to_static
to_static
:
False
use_dali
:
False
# model architecture
Arch
:
name
:
MobileNetV3_large_x1_0
class_num
:
2
pretrained
:
True
use_sync_bn
:
True
# loss function config for traing/eval process
Loss
:
Train
:
-
CELoss
:
weight
:
1.0
epsilon
:
0.1
Eval
:
-
CELoss
:
weight
:
1.0
Optimizer
:
name
:
Momentum
momentum
:
0.9
lr
:
name
:
Cosine
learning_rate
:
0.13
warmup_epoch
:
5
regularizer
:
name
:
'
L2'
coeff
:
0.00002
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/text_direction/
cls_label_path
:
./dataset/text_direction/train_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
RandCropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
512
drop_last
:
False
shuffle
:
True
loader
:
num_workers
:
8
use_shared_memory
:
True
Eval
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/text_direction/
cls_label_path
:
./dataset/text_direction/val_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
256
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
4
use_shared_memory
:
True
Infer
:
infer_imgs
:
docs/images/inference_deployment/whl_demo.jpg
batch_size
:
10
transforms
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
256
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
PostProcess
:
name
:
Topk
topk
:
5
class_id_map_file
:
ppcls/utils/imagenet1k_label_list.txt
Metric
:
Train
:
-
TopkAcc
:
topk
:
[
1
,
2
]
Eval
:
-
TopkAcc
:
topk
:
[
1
,
2
]
ppcls/configs/PULC/text_direction/PPLCNet_x1_0.yaml
0 → 100644
浏览文件 @
3d53d8b9
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
./output/
device
:
gpu
save_interval
:
1
eval_during_train
:
True
start_eval_epoch
:
18
eval_interval
:
1
epochs
:
20
print_batch_step
:
10
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
80
,
160
]
save_inference_dir
:
./inference
# training model under @to_static
to_static
:
False
use_dali
:
False
# model architecture
Arch
:
name
:
PPLCNet_x1_0
class_num
:
2
pretrained
:
True
use_ssld
:
True
stride_list
:
[
2
,
[
2
,
1
],
[
2
,
1
],
[
2
,
1
],
[
2
,
1
]]
# loss function config for traing/eval process
Loss
:
Train
:
-
CELoss
:
weight
:
1.0
Eval
:
-
CELoss
:
weight
:
1.0
Optimizer
:
name
:
Momentum
momentum
:
0.9
lr
:
name
:
Cosine
learning_rate
:
0.8
warmup_epoch
:
5
regularizer
:
name
:
'
L2'
coeff
:
0.00004
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/text_direction/
cls_label_path
:
./dataset/text_direction/train_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
160
,
80
]
-
TimmAutoAugment
:
prob
:
1.0
config_str
:
rand-m9-mstd0.5-inc1
interpolation
:
bicubic
img_size
:
[
160
,
80
]
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
RandomErasing
:
EPSILON
:
0.0
sl
:
0.02
sh
:
1.0/3.0
r1
:
0.3
attempt
:
10
use_log_aspect
:
True
mode
:
pixel
sampler
:
name
:
DistributedBatchSampler
batch_size
:
256
drop_last
:
False
shuffle
:
True
loader
:
num_workers
:
16
use_shared_memory
:
True
Eval
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/text_direction/
cls_label_path
:
./dataset/text_direction/val_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
160
,
80
]
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
128
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
8
use_shared_memory
:
True
Infer
:
infer_imgs
:
docs/images/inference_deployment/whl_demo.jpg
batch_size
:
10
transforms
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
160
,
80
]
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
PostProcess
:
name
:
Topk
topk
:
5
class_id_map_file
:
ppcls/utils/imagenet1k_label_list.txt
Metric
:
Train
:
-
TopkAcc
:
topk
:
[
1
,
2
]
Eval
:
-
TopkAcc
:
topk
:
[
1
,
2
]
ppcls/configs/PULC/text_direction/PPLCNet_x1_0_distillation.yaml
0 → 100644
浏览文件 @
3d53d8b9
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
./output/
device
:
gpu
save_interval
:
1
eval_during_train
:
True
start_eval_epoch
:
18
eval_interval
:
1
epochs
:
20
print_batch_step
:
10
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
80
,
160
]
save_inference_dir
:
./inference
# training model under @to_static
to_static
:
False
use_dali
:
False
# model architecture
Arch
:
name
:
"
DistillationModel"
class_num
:
&class_num
2
# if not null, its lengths should be same as models
pretrained_list
:
# if not null, its lengths should be same as models
freeze_params_list
:
-
True
-
False
use_sync_bn
:
True
models
:
-
Teacher
:
name
:
ResNet101_vd
class_num
:
*class_num
stride_list
:
[
2
,
[
2
,
1
],
[
2
,
1
],
[
2
,
1
],
[
2
,
1
]]
-
Student
:
name
:
PPLCNet_x1_0
class_num
:
*class_num
stride_list
:
[
2
,
[
2
,
1
],
[
2
,
1
],
[
2
,
1
],
[
2
,
1
]]
pretrained
:
True
use_ssld
:
True
infer_model_name
:
"
Student"
# loss function config for traing/eval process
Loss
:
Train
:
-
DistillationDMLLoss
:
weight
:
1.0
model_name_pairs
:
-
[
"
Student"
,
"
Teacher"
]
Eval
:
-
CELoss
:
weight
:
1.0
Optimizer
:
name
:
Momentum
momentum
:
0.9
lr
:
name
:
Cosine
learning_rate
:
0.8
warmup_epoch
:
5
regularizer
:
name
:
'
L2'
coeff
:
0.00004
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/text_direction/
cls_label_path
:
./dataset/text_direction/train_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
160
,
80
]
-
TimmAutoAugment
:
prob
:
1.0
config_str
:
rand-m9-mstd0.5-inc1
interpolation
:
bicubic
img_size
:
[
160
,
80
]
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
RandomErasing
:
EPSILON
:
0.0
sl
:
0.02
sh
:
1.0/3.0
r1
:
0.3
attempt
:
10
use_log_aspect
:
True
mode
:
pixel
sampler
:
name
:
DistributedBatchSampler
batch_size
:
256
drop_last
:
False
shuffle
:
True
loader
:
num_workers
:
16
use_shared_memory
:
True
Eval
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/text_direction/
cls_label_path
:
./dataset/text_direction/val_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
160
,
80
]
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
128
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
8
use_shared_memory
:
True
Infer
:
infer_imgs
:
docs/images/inference_deployment/whl_demo.jpg
batch_size
:
10
transforms
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
160
,
80
]
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
PostProcess
:
name
:
Topk
topk
:
5
class_id_map_file
:
ppcls/utils/imagenet1k_label_list.txt
Metric
:
Train
:
-
DistillationTopkAcc
:
model_key
:
"
Student"
topk
:
[
1
,
2
]
Eval
:
-
TopkAcc
:
topk
:
[
1
,
2
]
ppcls/configs/PULC/text_direction/PPLCNet_x1_0_search.yaml
0 → 100644
浏览文件 @
3d53d8b9
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
./output/
device
:
gpu
save_interval
:
1
eval_during_train
:
True
start_eval_epoch
:
18
eval_interval
:
1
epochs
:
20
print_batch_step
:
10
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
48
,
192
]
save_inference_dir
:
./inference
# training model under @to_static
to_static
:
False
use_dali
:
False
# model architecture
Arch
:
name
:
PPLCNet_x1_0
class_num
:
2
pretrained
:
True
use_ssld
:
True
stride_list
:
[
2
,
[
2
,
1
],
[
2
,
1
],
[
2
,
1
],
[
2
,
1
]]
# loss function config for traing/eval process
Loss
:
Train
:
-
CELoss
:
weight
:
1.0
Eval
:
-
CELoss
:
weight
:
1.0
Optimizer
:
name
:
Momentum
momentum
:
0.9
lr
:
name
:
Cosine
learning_rate
:
0.5
warmup_epoch
:
5
regularizer
:
name
:
'
L2'
coeff
:
0.00004
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/text_direction/
cls_label_path
:
./dataset/text_direction/train_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
192
,
48
]
-
TimmAutoAugment
:
prob
:
0.0
config_str
:
rand-m9-mstd0.5-inc1
interpolation
:
bicubic
img_size
:
[
192
,
48
]
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
RandomErasing
:
EPSILON
:
0.0
sl
:
0.02
sh
:
1.0/3.0
r1
:
0.3
attempt
:
10
use_log_aspect
:
True
mode
:
pixel
sampler
:
name
:
DistributedBatchSampler
batch_size
:
256
drop_last
:
False
shuffle
:
True
loader
:
num_workers
:
16
use_shared_memory
:
True
Eval
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/text_direction/
cls_label_path
:
./dataset/text_direction/val_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
192
,
48
]
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
128
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
8
use_shared_memory
:
True
Infer
:
infer_imgs
:
docs/images/inference_deployment/whl_demo.jpg
batch_size
:
10
transforms
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
192
,
48
]
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
PostProcess
:
name
:
Topk
topk
:
5
class_id_map_file
:
ppcls/utils/imagenet1k_label_list.txt
Metric
:
Train
:
-
TopkAcc
:
topk
:
[
1
,
2
]
Eval
:
-
TopkAcc
:
topk
:
[
1
,
2
]
ppcls/configs/PULC/text_direction/SwinTransformer_tiny_patch4_window7_224.yaml
0 → 100644
浏览文件 @
3d53d8b9
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
./output/
device
:
gpu
save_interval
:
1
eval_during_train
:
True
eval_interval
:
1
start_eval_epoch
:
10
epochs
:
20
print_batch_step
:
10
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
224
,
224
]
save_inference_dir
:
./inference
# training model under @to_static
to_static
:
False
use_dali
:
False
# mixed precision training
AMP
:
scale_loss
:
128.0
use_dynamic_loss_scaling
:
True
# O1: mixed fp16
level
:
O1
# model architecture
Arch
:
name
:
SwinTransformer_tiny_patch4_window7_224
class_num
:
2
pretrained
:
True
# loss function config for traing/eval process
Loss
:
Train
:
-
CELoss
:
weight
:
1.0
epsilon
:
0.1
Eval
:
-
CELoss
:
weight
:
1.0
Optimizer
:
name
:
AdamW
beta1
:
0.9
beta2
:
0.999
epsilon
:
1e-8
weight_decay
:
0.05
no_weight_decay_name
:
absolute_pos_embed relative_position_bias_table .bias norm
one_dim_param_no_weight_decay
:
True
lr
:
name
:
Cosine
learning_rate
:
1e-4
eta_min
:
2e-6
warmup_epoch
:
5
warmup_start_lr
:
2e-7
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/text_direction/
cls_label_path
:
./dataset/text_direction/train_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
RandCropImage
:
size
:
224
interpolation
:
bicubic
backend
:
pil
-
TimmAutoAugment
:
config_str
:
rand-m9-mstd0.5-inc1
interpolation
:
bicubic
img_size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
RandomErasing
:
EPSILON
:
0.25
sl
:
0.02
sh
:
1.0/3.0
r1
:
0.3
attempt
:
10
use_log_aspect
:
True
mode
:
pixel
batch_transform_ops
:
-
OpSampler
:
MixupOperator
:
alpha
:
0.8
prob
:
0.5
CutmixOperator
:
alpha
:
1.0
prob
:
0.5
sampler
:
name
:
DistributedBatchSampler
batch_size
:
128
drop_last
:
False
shuffle
:
True
loader
:
num_workers
:
8
use_shared_memory
:
True
Eval
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/text_direction/
cls_label_path
:
./dataset/text_direction/val_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
256
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
8
use_shared_memory
:
True
Infer
:
infer_imgs
:
docs/images/inference_deployment/whl_demo.jpg
batch_size
:
10
transforms
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
256
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
PostProcess
:
name
:
Topk
topk
:
5
class_id_map_file
:
ppcls/utils/imagenet1k_label_list.txt
Metric
:
Train
:
-
TopkAcc
:
topk
:
[
1
,
2
]
Eval
:
-
TopkAcc
:
topk
:
[
1
,
2
]
ppcls/configs/PULC/text_direction/search.yaml
0 → 100644
浏览文件 @
3d53d8b9
base_config_file
:
ppcls/configs/PULC/text_direction/PPLCNet_x1_0.yaml
distill_config_file
:
ppcls/configs/PULC/text_direction/PPLCNet_x1_0_distillation.yaml
gpus
:
0,1,2,3
output_dir
:
output/search_text
search_times
:
1
search_dict
:
-
search_key
:
lrs
replace_config
:
-
Optimizer.lr.learning_rate
search_values
:
[
0.1
,
0.2
,
0.3
,
0.4
,
0.5
,
0.6
,
0.7
,
0.8
]
-
search_key
:
resolutions
replace_config
:
-
DataLoader.Train.dataset.transform_ops.1.ResizeImage.size
-
DataLoader.Train.dataset.transform_ops.2.TimmAutoAugment.img_size
-
DataLoader.Eval.dataset.transform_ops.1.ResizeImage.size
search_values
:
[[
192
,
48
],
[
180
,
60
],
[
160
,
80
]]
-
search_key
:
ra_probs
replace_config
:
-
DataLoader.Train.dataset.transform_ops.2.TimmAutoAugment.prob
search_values
:
[
0.0
,
0.2
,
0.4
,
0.6
,
0.8
,
1.0
]
-
search_key
:
re_probs
replace_config
:
-
DataLoader.Train.dataset.transform_ops.4.RandomErasing.EPSILON
search_values
:
[
0.0
,
0.2
,
0.4
,
0.6
,
0.8
,
1.0
]
-
search_key
:
lr_mult_list
replace_config
:
-
Arch.lr_mult_list
search_values
:
-
[
0.0
,
0.2
,
0.4
,
0.6
,
0.8
,
1.0
]
-
[
0.0
,
0.4
,
0.4
,
0.8
,
0.8
,
1.0
]
-
[
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
]
teacher
:
rm_keys
:
-
Arch.lr_mult_list
search_values
:
-
ResNet101_vd
-
ResNet50_vd
final_replace
:
Arch.lr_mult_list
:
Arch.models.1.Student.lr_mult_list
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录