未验证 提交 36aeefcf 编写于 作者: C cuicheng01 提交者: GitHub

Merge pull request #1064 from TingquanGao/dev/Support_enable_cutmix_mixup

support to enable mixup and cutmix at same time
...@@ -29,7 +29,7 @@ from ppcls.data.preprocess.ops.operators import NormalizeImage ...@@ -29,7 +29,7 @@ from ppcls.data.preprocess.ops.operators import NormalizeImage
from ppcls.data.preprocess.ops.operators import ToCHWImage from ppcls.data.preprocess.ops.operators import ToCHWImage
from ppcls.data.preprocess.ops.operators import AugMix from ppcls.data.preprocess.ops.operators import AugMix
from ppcls.data.preprocess.batch_ops.batch_operators import MixupOperator, CutmixOperator, FmixOperator from ppcls.data.preprocess.batch_ops.batch_operators import MixupOperator, CutmixOperator, OpSampler, FmixOperator
import six import six
import numpy as np import numpy as np
...@@ -45,6 +45,7 @@ def transform(data, ops=[]): ...@@ -45,6 +45,7 @@ def transform(data, ops=[]):
class AutoAugment(RawImageNetPolicy): class AutoAugment(RawImageNetPolicy):
""" ImageNetPolicy wrapper to auto fit different img types """ """ ImageNetPolicy wrapper to auto fit different img types """
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
if six.PY2: if six.PY2:
super(AutoAugment, self).__init__(*args, **kwargs) super(AutoAugment, self).__init__(*args, **kwargs)
...@@ -69,6 +70,7 @@ class AutoAugment(RawImageNetPolicy): ...@@ -69,6 +70,7 @@ class AutoAugment(RawImageNetPolicy):
class RandAugment(RawRandAugment): class RandAugment(RawRandAugment):
""" RandAugment wrapper to auto fit different img types """ """ RandAugment wrapper to auto fit different img types """
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
if six.PY2: if six.PY2:
super(RandAugment, self).__init__(*args, **kwargs) super(RandAugment, self).__init__(*args, **kwargs)
......
...@@ -16,13 +16,17 @@ from __future__ import absolute_import ...@@ -16,13 +16,17 @@ from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
from __future__ import unicode_literals from __future__ import unicode_literals
import random
import numpy as np import numpy as np
from ppcls.utils import logger
from ppcls.data.preprocess.ops.fmix import sample_mask from ppcls.data.preprocess.ops.fmix import sample_mask
class BatchOperator(object): class BatchOperator(object):
""" BatchOperator """ """ BatchOperator """
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
pass pass
...@@ -46,9 +50,20 @@ class BatchOperator(object): ...@@ -46,9 +50,20 @@ class BatchOperator(object):
class MixupOperator(BatchOperator): class MixupOperator(BatchOperator):
""" Mixup operator """ """ Mixup operator """
def __init__(self, alpha=0.2):
assert alpha > 0., \ def __init__(self, alpha: float=1.):
'parameter alpha[%f] should > 0.0' % (alpha) """Build Mixup operator
Args:
alpha (float, optional): The parameter alpha of mixup. Defaults to 1..
Raises:
Exception: The value of parameter is illegal.
"""
if alpha <= 0:
raise Exception(
f"Parameter \"alpha\" of Mixup should be greater than 0. \"alpha\": {alpha}."
)
self._alpha = alpha self._alpha = alpha
def __call__(self, batch): def __call__(self, batch):
...@@ -62,9 +77,20 @@ class MixupOperator(BatchOperator): ...@@ -62,9 +77,20 @@ class MixupOperator(BatchOperator):
class CutmixOperator(BatchOperator): class CutmixOperator(BatchOperator):
""" Cutmix operator """ """ Cutmix operator """
def __init__(self, alpha=0.2): def __init__(self, alpha=0.2):
assert alpha > 0., \ """Build Cutmix operator
'parameter alpha[%f] should > 0.0' % (alpha)
Args:
alpha (float, optional): The parameter alpha of cutmix. Defaults to 0.2.
Raises:
Exception: The value of parameter is illegal.
"""
if alpha <= 0:
raise Exception(
f"Parameter \"alpha\" of Cutmix should be greater than 0. \"alpha\": {alpha}."
)
self._alpha = alpha self._alpha = alpha
def _rand_bbox(self, size, lam): def _rand_bbox(self, size, lam):
...@@ -72,8 +98,8 @@ class CutmixOperator(BatchOperator): ...@@ -72,8 +98,8 @@ class CutmixOperator(BatchOperator):
w = size[2] w = size[2]
h = size[3] h = size[3]
cut_rat = np.sqrt(1. - lam) cut_rat = np.sqrt(1. - lam)
cut_w = np.int(w * cut_rat) cut_w = int(w * cut_rat)
cut_h = np.int(h * cut_rat) cut_h = int(h * cut_rat)
# uniform # uniform
cx = np.random.randint(w) cx = np.random.randint(w)
...@@ -101,6 +127,7 @@ class CutmixOperator(BatchOperator): ...@@ -101,6 +127,7 @@ class CutmixOperator(BatchOperator):
class FmixOperator(BatchOperator): class FmixOperator(BatchOperator):
""" Fmix operator """ """ Fmix operator """
def __init__(self, alpha=1, decay_power=3, max_soft=0., reformulate=False): def __init__(self, alpha=1, decay_power=3, max_soft=0., reformulate=False):
self._alpha = alpha self._alpha = alpha
self._decay_power = decay_power self._decay_power = decay_power
...@@ -115,3 +142,42 @@ class FmixOperator(BatchOperator): ...@@ -115,3 +142,42 @@ class FmixOperator(BatchOperator):
size, self._max_soft, self._reformulate) size, self._max_soft, self._reformulate)
imgs = mask * imgs + (1 - mask) * imgs[idx] imgs = mask * imgs + (1 - mask) * imgs[idx]
return list(zip(imgs, labels, labels[idx], [lam] * bs)) return list(zip(imgs, labels, labels[idx], [lam] * bs))
class OpSampler(object):
""" Sample a operator from """
def __init__(self, **op_dict):
"""Build OpSampler
Raises:
Exception: The parameter \"prob\" of operator(s) are be set error.
"""
if len(op_dict) < 1:
msg = f"ConfigWarning: No operator in \"OpSampler\". \"OpSampler\" has been skipped."
self.ops = {}
total_prob = 0
for op_name in op_dict:
param = op_dict[op_name]
if "prob" not in param:
msg = f"ConfigWarning: Parameter \"prob\" should be set when use operator in \"OpSampler\". The operator \"{op_name}\"'s prob has been set \"0\"."
logger.warning(msg)
prob = param.pop("prob", 0)
total_prob += prob
op = eval(op_name)(**param)
self.ops.update({op: prob})
if total_prob > 1:
msg = f"ConfigError: The total prob of operators in \"OpSampler\" should be less 1."
logger.error(msg)
raise Exception(msg)
# add "None Op" when total_prob < 1, "None Op" do nothing
self.ops[None] = 1 - total_prob
def __call__(self, batch):
op = random.choices(
list(self.ops.keys()), weights=list(self.ops.values()), k=1)[0]
# return batch directly when None Op
return op(batch) if op else batch
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册