提交 32dc1c1c 编写于 作者: littletomatodonkey's avatar littletomatodonkey

improve dygraph model

上级 26289ce0
...@@ -31,12 +31,12 @@ def check_version(): ...@@ -31,12 +31,12 @@ def check_version():
Log error and exit when the installed version of paddlepaddle is Log error and exit when the installed version of paddlepaddle is
not satisfied. not satisfied.
""" """
err = "PaddlePaddle version 2.0.0 or higher is required, " \ err = "PaddlePaddle version 1.8.0 or higher is required, " \
"or a suitable develop version is satisfied as well. \n" \ "or a suitable develop version is satisfied as well. \n" \
"Please make sure the version is good with your code." \ "Please make sure the version is good with your code." \
try: try:
fluid.require_version('2.0.0') fluid.require_version('1.8.0')
except Exception: except Exception:
logger.error(err) logger.error(err)
sys.exit(1) sys.exit(1)
......
...@@ -64,14 +64,18 @@ def print_dict(d, delimiter=0): ...@@ -64,14 +64,18 @@ def print_dict(d, delimiter=0):
placeholder = "-" * 60 placeholder = "-" * 60
for k, v in sorted(d.items()): for k, v in sorted(d.items()):
if isinstance(v, dict): if isinstance(v, dict):
logger.info("{}{} : ".format(delimiter * " ", logger.coloring(k, "HEADER"))) logger.info("{}{} : ".format(delimiter * " ",
logger.coloring(k, "HEADER")))
print_dict(v, delimiter + 4) print_dict(v, delimiter + 4)
elif isinstance(v, list) and len(v) >= 1 and isinstance(v[0], dict): elif isinstance(v, list) and len(v) >= 1 and isinstance(v[0], dict):
logger.info("{}{} : ".format(delimiter * " ", logger.coloring(str(k),"HEADER"))) logger.info("{}{} : ".format(delimiter * " ",
logger.coloring(str(k), "HEADER")))
for value in v: for value in v:
print_dict(value, delimiter + 4) print_dict(value, delimiter + 4)
else: else:
logger.info("{}{} : {}".format(delimiter * " ", logger.coloring(k,"HEADER"), logger.coloring(v,"OKGREEN"))) logger.info("{}{} : {}".format(delimiter * " ",
logger.coloring(k, "HEADER"),
logger.coloring(v, "OKGREEN")))
if k.isupper(): if k.isupper():
logger.info(placeholder) logger.info(placeholder)
...@@ -138,7 +142,9 @@ def override(dl, ks, v): ...@@ -138,7 +142,9 @@ def override(dl, ks, v):
override(dl[k], ks[1:], v) override(dl[k], ks[1:], v)
else: else:
if len(ks) == 1: if len(ks) == 1:
assert ks[0] in dl, ('{} is not exist in {}'.format(ks[0], dl)) # assert ks[0] in dl, ('{} is not exist in {}'.format(ks[0], dl))
if not ks[0] in dl:
logger.warning('A new filed ({}) detected!'.format(ks[0], dl))
dl[ks[0]] = str2num(v) dl[ks[0]] = str2num(v)
else: else:
override(dl[ks[0]], ks[1:], v) override(dl[ks[0]], ks[1:], v)
......
...@@ -35,8 +35,6 @@ from ppcls.utils.misc import AverageMeter ...@@ -35,8 +35,6 @@ from ppcls.utils.misc import AverageMeter
from ppcls.utils import logger from ppcls.utils import logger
from paddle.fluid.dygraph.base import to_variable from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.incubate.fleet.collective import fleet
from paddle.fluid.incubate.fleet.collective import DistributedStrategy
def create_dataloader(): def create_dataloader():
...@@ -243,43 +241,6 @@ def create_optimizer(config, parameter_list=None): ...@@ -243,43 +241,6 @@ def create_optimizer(config, parameter_list=None):
return opt(lr, parameter_list) return opt(lr, parameter_list)
def dist_optimizer(config, optimizer):
"""
Create a distributed optimizer based on a normal optimizer
Args:
config(dict):
optimizer(): a normal optimizer
Returns:
optimizer: a distributed optimizer
"""
exec_strategy = fluid.ExecutionStrategy()
exec_strategy.num_threads = 3
exec_strategy.num_iteration_per_drop_scope = 10
dist_strategy = DistributedStrategy()
dist_strategy.nccl_comm_num = 1
dist_strategy.fuse_all_reduce_ops = True
dist_strategy.exec_strategy = exec_strategy
optimizer = fleet.distributed_optimizer(optimizer, strategy=dist_strategy)
return optimizer
def mixed_precision_optimizer(config, optimizer):
use_fp16 = config.get('use_fp16', False)
amp_scale_loss = config.get('amp_scale_loss', 1.0)
use_dynamic_loss_scaling = config.get('use_dynamic_loss_scaling', False)
if use_fp16:
optimizer = fluid.contrib.mixed_precision.decorate(
optimizer,
init_loss_scaling=amp_scale_loss,
use_dynamic_loss_scaling=use_dynamic_loss_scaling)
return optimizer
def create_feeds(batch, use_mix): def create_feeds(batch, use_mix):
image = batch[0] image = batch[0]
if use_mix: if use_mix:
...@@ -307,26 +268,22 @@ def run(dataloader, config, net, optimizer=None, epoch=0, mode='train'): ...@@ -307,26 +268,22 @@ def run(dataloader, config, net, optimizer=None, epoch=0, mode='train'):
Returns: Returns:
""" """
print_interval = config.get("print_interval", 10)
use_mix = config.get("use_mix", False) and mode == "train" use_mix = config.get("use_mix", False) and mode == "train"
if use_mix:
metric_list = OrderedDict([ metric_list = [
("loss", AverageMeter('loss', '7.4f')), ("loss", AverageMeter('loss', '7.4f')),
("lr", AverageMeter( ("lr", AverageMeter(
'lr', 'f', need_avg=False)), 'lr', 'f', need_avg=False)),
("batch_time", AverageMeter('elapse', '.3f')), ("batch_time", AverageMeter('elapse', '.3f')),
('reader_time', AverageMeter('reader', '.3f')), ('reader_time', AverageMeter('reader', '.3f')),
]) ]
else: if not use_mix:
topk_name = 'top{}'.format(config.topk) topk_name = 'top{}'.format(config.topk)
metric_list = OrderedDict([ metric_list.insert(1, (topk_name, AverageMeter(topk_name, '.4f')))
("loss", AverageMeter('loss', '7.4f')), metric_list.insert(1, ("top1", AverageMeter("top1", '.4f')))
("top1", AverageMeter('top1', '.4f')),
(topk_name, AverageMeter(topk_name, '.4f')), metric_list = OrderedDict(metric_list)
("lr", AverageMeter(
'lr', 'f', need_avg=False)),
("batch_time", AverageMeter('elapse', '.3f')),
('reader_time', AverageMeter('reader', '.3f')),
])
tic = time.time() tic = time.time()
for idx, batch in enumerate(dataloader()): for idx, batch in enumerate(dataloader()):
...@@ -354,17 +311,19 @@ def run(dataloader, config, net, optimizer=None, epoch=0, mode='train'): ...@@ -354,17 +311,19 @@ def run(dataloader, config, net, optimizer=None, epoch=0, mode='train'):
tic = time.time() tic = time.time()
fetchs_str = ' '.join([str(m.value) for m in metric_list.values()]) fetchs_str = ' '.join([str(m.value) for m in metric_list.values()])
if mode == 'eval':
logger.info("{:s} step:{:<4d} {:s}s".format(mode, idx, fetchs_str)) if idx % print_interval == 0:
else: if mode == 'eval':
epoch_str = "epoch:{:<3d}".format(epoch) logger.info("{:s} step:{:<4d} {:s}s".format(mode, idx,
step_str = "{:s} step:{:<4d}".format(mode, idx) fetchs_str))
else:
logger.info("{:s} {:s} {:s}s".format( epoch_str = "epoch:{:<3d}".format(epoch)
logger.coloring(epoch_str, "HEADER") step_str = "{:s} step:{:<4d}".format(mode, idx)
if idx == 0 else epoch_str, logger.info("{:s} {:s} {:s}s".format(
logger.coloring(step_str, "PURPLE"), logger.coloring(epoch_str, "HEADER")
logger.coloring(fetchs_str, 'OKGREEN'))) if idx == 0 else epoch_str,
logger.coloring(step_str, "PURPLE"),
logger.coloring(fetchs_str, 'OKGREEN')))
end_str = ' '.join([str(m.mean) for m in metric_list.values()] + end_str = ' '.join([str(m.mean) for m in metric_list.values()] +
[metric_list['batch_time'].total]) [metric_list['batch_time'].total])
......
...@@ -5,4 +5,5 @@ export PYTHONPATH=$PWD:$PYTHONPATH ...@@ -5,4 +5,5 @@ export PYTHONPATH=$PWD:$PYTHONPATH
python -m paddle.distributed.launch \ python -m paddle.distributed.launch \
--selected_gpus="0,1,2,3" \ --selected_gpus="0,1,2,3" \
tools/train.py \ tools/train.py \
-c ./configs/ResNet/ResNet50.yaml -c ./configs/ResNet/ResNet50_vd.yaml \
-o print_interval=10
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册