Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
2ec1d73e
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2ec1d73e
编写于
10月 22, 2020
作者:
W
weishengyu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
formatting
上级
e0859f74
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
71 addition
and
87 deletion
+71
-87
ppcls/modeling/architectures/ghostnet.py
ppcls/modeling/architectures/ghostnet.py
+71
-87
未找到文件。
ppcls/modeling/architectures/ghostnet.py
浏览文件 @
2ec1d73e
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
Licensed under the Apache License, Version 2.0 (the "License");
#
you may not use this file except in compliance with the License.
#
You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
#
Unless required by applicable law or agreed to in writing, software
#
distributed under the License is distributed on an "AS IS" BASIS,
#
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
See the License for the specific language governing permissions and
#
limitations under the License.
import
math
import
paddle
...
...
@@ -23,16 +23,14 @@ from paddle.nn.initializer import Uniform
class
ConvBNLayer
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
out_channels
,
kernel_size
,
stride
=
1
,
groups
=
1
,
act
=
"relu"
,
name
=
None
):
def
__init__
(
self
,
in_channels
,
out_channels
,
kernel_size
,
stride
=
1
,
groups
=
1
,
act
=
"relu"
,
name
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2d
(
in_channels
=
in_channels
,
...
...
@@ -41,19 +39,24 @@ class ConvBNLayer(nn.Layer):
stride
=
stride
,
padding
=
(
kernel_size
-
1
)
//
2
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
initializer
=
nn
.
initializer
.
MSRA
(),
name
=
name
+
"_weights"
),
bias_attr
=
False
)
weight_attr
=
ParamAttr
(
initializer
=
nn
.
initializer
.
MSRA
(),
name
=
name
+
"_weights"
),
bias_attr
=
False
)
bn_name
=
name
+
"_bn"
# In the old version, moving_variance_name was name + "_variance"
self
.
_batch_norm
=
BatchNorm
(
num_channels
=
out_channels
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
"_scale"
,
regularizer
=
L2DecayRegularizer
(
regularization_coeff
=
0.0
)),
bias_attr
=
ParamAttr
(
name
=
bn_name
+
"_offset"
,
regularizer
=
L2DecayRegularizer
(
regularization_coeff
=
0.0
)),
param_attr
=
ParamAttr
(
name
=
bn_name
+
"_scale"
,
regularizer
=
L2DecayRegularizer
(
regularization_coeff
=
0.0
)),
bias_attr
=
ParamAttr
(
name
=
bn_name
+
"_offset"
,
regularizer
=
L2DecayRegularizer
(
regularization_coeff
=
0.0
)),
moving_mean_name
=
bn_name
+
"_mean"
,
moving_variance_name
=
name
+
"_variance"
# wrong due to an old typo, will be fixed later.
moving_variance_name
=
name
+
"_variance"
# wrong due to an old typo, will be fixed later.
)
def
forward
(
self
,
inputs
):
...
...
@@ -63,12 +66,7 @@ class ConvBNLayer(nn.Layer):
class
SEBlock
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
reduction_ratio
=
4
,
name
=
None
):
def
__init__
(
self
,
num_channels
,
reduction_ratio
=
4
,
name
=
None
):
super
(
SEBlock
,
self
).
__init__
()
self
.
pool2d_gap
=
AdaptiveAvgPool2d
(
1
)
self
.
_num_channels
=
num_channels
...
...
@@ -77,16 +75,16 @@ class SEBlock(nn.Layer):
self
.
squeeze
=
Linear
(
num_channels
,
med_ch
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
),
name
=
name
+
"_1_weights"
),
bias_attr
=
ParamAttr
(
name
=
name
+
"_1_offset"
)
)
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
),
name
=
name
+
"_1_weights"
),
bias_attr
=
ParamAttr
(
name
=
name
+
"_1_offset"
)
)
stdv
=
1.0
/
math
.
sqrt
(
med_ch
*
1.0
)
self
.
excitation
=
Linear
(
med_ch
,
num_channels
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
),
name
=
name
+
"_2_weights"
),
bias_attr
=
ParamAttr
(
name
=
name
+
"_2_offset"
)
)
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
),
name
=
name
+
"_2_weights"
),
bias_attr
=
ParamAttr
(
name
=
name
+
"_2_offset"
)
)
def
forward
(
self
,
inputs
):
pool
=
self
.
pool2d_gap
(
inputs
)
...
...
@@ -95,23 +93,22 @@ class SEBlock(nn.Layer):
squeeze
=
F
.
relu
(
squeeze
)
excitation
=
self
.
excitation
(
squeeze
)
excitation
=
paddle
.
fluid
.
layers
.
clip
(
x
=
excitation
,
min
=
0
,
max
=
1
)
excitation
=
paddle
.
reshape
(
excitation
,
shape
=
[
-
1
,
self
.
_num_channels
,
1
,
1
])
excitation
=
paddle
.
reshape
(
excitation
,
shape
=
[
-
1
,
self
.
_num_channels
,
1
,
1
])
out
=
inputs
*
excitation
return
out
class
GhostModule
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
output_channels
,
kernel_size
=
1
,
ratio
=
2
,
dw_size
=
3
,
stride
=
1
,
relu
=
True
,
name
=
None
):
def
__init__
(
self
,
in_channels
,
output_channels
,
kernel_size
=
1
,
ratio
=
2
,
dw_size
=
3
,
stride
=
1
,
relu
=
True
,
name
=
None
):
super
(
GhostModule
,
self
).
__init__
()
init_channels
=
int
(
math
.
ceil
(
output_channels
/
ratio
))
new_channels
=
int
(
init_channels
*
(
ratio
-
1
))
...
...
@@ -122,8 +119,7 @@ class GhostModule(nn.Layer):
stride
=
stride
,
groups
=
1
,
act
=
"relu"
if
relu
else
None
,
name
=
name
+
"_primary_conv"
)
name
=
name
+
"_primary_conv"
)
self
.
cheap_operation
=
ConvBNLayer
(
in_channels
=
init_channels
,
out_channels
=
new_channels
,
...
...
@@ -131,8 +127,7 @@ class GhostModule(nn.Layer):
stride
=
1
,
groups
=
init_channels
,
act
=
"relu"
if
relu
else
None
,
name
=
name
+
"_cheap_operation"
)
name
=
name
+
"_cheap_operation"
)
def
forward
(
self
,
inputs
):
x
=
self
.
primary_conv
(
inputs
)
...
...
@@ -142,16 +137,14 @@ class GhostModule(nn.Layer):
class
GhostBottleneck
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
hidden_dim
,
output_channels
,
kernel_size
,
stride
,
use_se
,
name
=
None
):
def
__init__
(
self
,
in_channels
,
hidden_dim
,
output_channels
,
kernel_size
,
stride
,
use_se
,
name
=
None
):
super
(
GhostBottleneck
,
self
).
__init__
()
self
.
_stride
=
stride
self
.
_use_se
=
use_se
...
...
@@ -163,8 +156,7 @@ class GhostBottleneck(nn.Layer):
kernel_size
=
1
,
stride
=
1
,
relu
=
True
,
name
=
name
+
"_ghost_module_1"
)
name
=
name
+
"_ghost_module_1"
)
if
stride
==
2
:
self
.
depthwise_conv
=
ConvBNLayer
(
in_channels
=
hidden_dim
,
...
...
@@ -173,20 +165,17 @@ class GhostBottleneck(nn.Layer):
stride
=
stride
,
groups
=
hidden_dim
,
act
=
None
,
name
=
name
+
"_depthwise_depthwise"
# looks strange due to an old typo, will be fixed later.
name
=
name
+
"_depthwise_depthwise"
# looks strange due to an old typo, will be fixed later.
)
if
use_se
:
self
.
se_block
=
SEBlock
(
num_channels
=
hidden_dim
,
name
=
name
+
"_se"
)
self
.
se_block
=
SEBlock
(
num_channels
=
hidden_dim
,
name
=
name
+
"_se"
)
self
.
ghost_module_2
=
GhostModule
(
in_channels
=
hidden_dim
,
output_channels
=
output_channels
,
kernel_size
=
1
,
relu
=
False
,
name
=
name
+
"_ghost_module_2"
)
name
=
name
+
"_ghost_module_2"
)
if
stride
!=
1
or
in_channels
!=
output_channels
:
self
.
shortcut_depthwise
=
ConvBNLayer
(
in_channels
=
in_channels
,
...
...
@@ -195,7 +184,8 @@ class GhostBottleneck(nn.Layer):
stride
=
stride
,
groups
=
in_channels
,
act
=
None
,
name
=
name
+
"_shortcut_depthwise_depthwise"
# looks strange due to an old typo, will be fixed later.
name
=
name
+
"_shortcut_depthwise_depthwise"
# looks strange due to an old typo, will be fixed later.
)
self
.
shortcut_conv
=
ConvBNLayer
(
in_channels
=
in_channels
,
...
...
@@ -204,8 +194,7 @@ class GhostBottleneck(nn.Layer):
stride
=
1
,
groups
=
1
,
act
=
None
,
name
=
name
+
"_shortcut_conv"
)
name
=
name
+
"_shortcut_conv"
)
def
forward
(
self
,
inputs
):
x
=
self
.
ghost_module_1
(
inputs
)
...
...
@@ -253,8 +242,7 @@ class GhostNet(nn.Layer):
stride
=
2
,
groups
=
1
,
act
=
"relu"
,
name
=
"conv1"
)
name
=
"conv1"
)
# build inverted residual blocks
idx
=
0
self
.
ghost_bottleneck_list
=
[]
...
...
@@ -271,9 +259,7 @@ class GhostNet(nn.Layer):
kernel_size
=
k
,
stride
=
s
,
use_se
=
use_se
,
name
=
"_ghostbottleneck_"
+
str
(
idx
)
)
)
name
=
"_ghostbottleneck_"
+
str
(
idx
)))
self
.
ghost_bottleneck_list
.
append
(
ghost_bottleneck
)
idx
+=
1
# build last several layers
...
...
@@ -286,8 +272,7 @@ class GhostNet(nn.Layer):
stride
=
1
,
groups
=
1
,
act
=
"relu"
,
name
=
"conv_last"
)
name
=
"conv_last"
)
self
.
pool2d_gap
=
AdaptiveAvgPool2d
(
1
)
in_channels
=
output_channels
self
.
_fc0_output_channels
=
1280
...
...
@@ -297,16 +282,15 @@ class GhostNet(nn.Layer):
kernel_size
=
1
,
stride
=
1
,
act
=
"relu"
,
name
=
"fc_0"
)
name
=
"fc_0"
)
self
.
dropout
=
nn
.
Dropout
(
p
=
0.2
)
stdv
=
1.0
/
math
.
sqrt
(
self
.
_fc0_output_channels
*
1.0
)
self
.
fc_1
=
Linear
(
self
.
_fc0_output_channels
,
class_dim
,
weight_attr
=
ParamAttr
(
name
=
"fc_1_weights"
,
initializer
=
Uniform
(
-
stdv
,
stdv
)),
bias_attr
=
ParamAttr
(
name
=
"fc_1_offset"
)
)
weight_attr
=
ParamAttr
(
name
=
"fc_1_weights"
,
initializer
=
Uniform
(
-
stdv
,
stdv
)),
bias_attr
=
ParamAttr
(
name
=
"fc_1_offset"
)
)
def
forward
(
self
,
inputs
):
x
=
self
.
conv1
(
inputs
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录