提交 2e10d5a4 编写于 作者: Y yaohai

add document for multilabel

上级 fee32b55
......@@ -82,6 +82,7 @@ PaddleClas is a toolset for image classification tasks prepared for the industry
- Advanced tutorials
- [Knowledge distillation](./docs/en/advanced_tutorials/distillation/distillation_en.md)
- [Data augmentation](./docs/en/advanced_tutorials/image_augmentation/ImageAugment_en.md)
- [Multilabel classification](./docs/en/advanced_tutorials/multilabel/multilabel_en.md)
- Applications
- [Transfer learning](./docs/en/application/transfer_learning_en.md)
- [Pretrained model with 100,000 categories](./docs/en/application/transfer_learning_en.md)
......
......@@ -83,6 +83,7 @@
- 高阶使用
- [知识蒸馏](./docs/zh_CN/advanced_tutorials/distillation/distillation.md)
- [数据增广](./docs/zh_CN/advanced_tutorials/image_augmentation/ImageAugment.md)
- [多标签分类](./docs/zh_CN/advanced_tutorials/multilabel/multilabel.md)
- 特色拓展应用
- [迁移学习](./docs/zh_CN/application/transfer_learning.md)
- [10万类图像分类预训练模型](./docs/zh_CN/application/transfer_learning.md)
......
......@@ -6,4 +6,4 @@ advanced_tutorials
image_augmentation/index
distillation/index
multilabel/index
Multilabel Classification
================================
.. toctree::
:maxdepth: 3
multilabel.md
\ No newline at end of file
# Multilabel classification quick start
Based on the [NUS-WIDE-SCENE](https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-WIDE.html) dataset which is a subset of NUS-WIDE dataset, you can experience multilabel of PaddleClas, include training, evaluation and prediction. Please refer to [Installation](install.md) to install at first.
## Preparation
* Enter PaddleClas directory
```
cd path_to_PaddleClas
```
* Create and enter `dataset/NUS-WIDE-SCENE` directory, download and decompress NUS-WIDE-SCENE dataset
```shell
mkdir dataset/NUS-WIDE-SCENE
cd dataset/NUS-WIDE-SCENE
wget https://paddle-imagenet-models-name.bj.bcebos.com/data/NUS-SCENE-dataset.tar
tar -xf NUS-SCENE-dataset.tar
```
* Return `PaddleClas` root home
```
cd ../../
```
## Environment
### Download pretrained model
You can use the following commands to download the pretrained model of ResNet50_vd.
```bash
mkdir pretrained
cd pretrained
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams
cd ../
```
## Training
```shell
export CUDA_VISIBLE_DEVICES=0
python -m paddle.distributed.launch \
--gpus="0" \
tools/train.py \
-c ./configs/quick_start/ResNet50_vd_multilabel.yaml
```
After training for 10 epochs, the best accuracy over the validation set should be around 0.72.
## Evaluation
```bash
python tools/eval.py \
-c ./configs/quick_start/ResNet50_vd_multilabel.yaml \
-o pretrained_model="./output/ResNet50_vd/best_model/ppcls" \
-o load_static_weights=False
```
The metric of evaluation is based on mAP, which is commonly used in multilabel task to show model perfermance. The mAP over validation set should be around 0.57.
## Prediction
```bash
python tools/infer/infer.py \
-i "./dataset/NUS-WIDE-SCENE/NUS-SCENE-dataset/images/0199_434752251.jpg" \
--model ResNet50_vd \
--pretrained_model "./output/ResNet50_vd/best_model/ppcls" \
--use_gpu True \
--load_static_weights False \
--multilabel True \
--class_num 33
```
You will get multiple output such as the following:
```
class id: 3, probability: 0.6025
class id: 23, probability: 0.5491
class id: 32, probability: 0.7006
```
\ No newline at end of file
......@@ -6,4 +6,4 @@
image_augmentation/index
distillation/index
multilabel/index
多标签分类
================================
.. toctree::
:maxdepth: 3
multilabel.md
\ No newline at end of file
# 多标签分类quick start
基于[NUS-WIDE-SCENE](https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-WIDE.html)数据集,体验多标签分类的训练、评估、预测的过程,该数据集是NUS-WIDE数据集的一个子集。请事先参考[安装指南](install.md)配置运行环境和克隆PaddleClas代码。
## 一、数据和模型准备
* 进入PaddleClas目录。
```
cd path_to_PaddleClas
```
* 创建并进入`dataset/NUS-WIDE-SCENE`目录,下载并解压NUS-WIDE-SCENE数据集。
```shell
mkdir dataset/NUS-WIDE-SCENE
cd dataset/NUS-WIDE-SCENE
wget https://paddle-imagenet-models-name.bj.bcebos.com/data/NUS-SCENE-dataset.tar
tar -xf NUS-SCENE-dataset.tar
```
* 返回`PaddleClas`根目录
```
cd ../../
```
## 二、环境准备
### 2.1 下载预训练模型
本例展示基于ResNet50_vd模型的多标签分类流程,因此首先下载ResNet50_vd的预训练模型
```bash
mkdir pretrained
cd pretrained
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams
cd ../
```
## 三、模型训练
```shell
export CUDA_VISIBLE_DEVICES=0
python -m paddle.distributed.launch \
--gpus="0" \
tools/train.py \
-c ./configs/quick_start/ResNet50_vd_multilabel.yaml
```
训练10epoch之后,验证集最好的正确率应该在0.72左右。
## 四、模型评估
```bash
python tools/eval.py \
-c ./configs/quick_start/ResNet50_vd_multilabel.yaml \
-o pretrained_model="./output/ResNet50_vd/best_model/ppcls" \
-o load_static_weights=False
```
评估指标采用mAP,验证集的mAP应该在0.57左右。
## 五、模型预测
```bash
python tools/infer/infer.py \
-i "./dataset/NUS-WIDE-SCENE/NUS-SCENE-dataset/images/0199_434752251.jpg" \
--model ResNet50_vd \
--pretrained_model "./output/ResNet50_vd/best_model/ppcls" \
--use_gpu True \
--load_static_weights False \
--multilabel True \
--class_num 33
```
得到类似下面的输出:
```
class id: 3, probability: 0.6025
class id: 23, probability: 0.5491
class id: 32, probability: 0.7006
```
\ No newline at end of file
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册