提交 2b758dec 编写于 作者: H HydrogenSulfate

add pact chain configs and refine related scripts

上级 1fe19cb7
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 600
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: ./inference
# training model under @to_static
to_static: False
use_dali: False
# model architecture
Arch:
name: PPHGNet_small
class_num: 1000
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
epsilon: 0.1
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: Cosine
learning_rate: 0.5
warmup_epoch: 5
regularizer:
name: 'L2'
coeff: 0.00004
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- RandCropImage:
size: 224
interpolation: bicubic
backend: pil
- RandFlipImage:
flip_code: 1
- TimmAutoAugment:
config_str: rand-m7-mstd0.5-inc1
interpolation: bicubic
img_size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- RandomErasing:
EPSILON: 0.25
sl: 0.02
sh: 1.0/3.0
r1: 0.3
attempt: 10
use_log_aspect: True
mode: pixel
batch_transform_ops:
- OpSampler:
MixupOperator:
alpha: 0.2
prob: 0.5
CutmixOperator:
alpha: 1.0
prob: 0.5
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: True
loader:
num_workers: 16
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 236
interpolation: bicubic
backend: pil
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: False
loader:
num_workers: 16
use_shared_memory: True
Infer:
infer_imgs: docs/images/inference_deployment/whl_demo.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 236
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
topk: 5
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
Metric:
Train:
- TopkAcc:
topk: [1, 5]
Eval:
- TopkAcc:
topk: [1, 5]
===========================train_params===========================
model_name:GeneralRecognition_PPLCNet_x2_5
python:python3.7
gpu_list:0
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=100
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:pact_train
norm_train:null
pact_train:tools/train.py -c ppcls/configs/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Slim.quant.name=pact -o Arch.pretrained=True -o Optimizer.lr.learning_rate=0.004
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5.yaml -o Slim.quant.name=pact
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:null
quant_export:tools/export_model.py -c ppcls/configs/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5.yaml -o Slim.quant.name=pact
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/pretrain/general_PPLCNet_x2_5_pretrained_v1.0.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_rec.py -c configs/inference_rec.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.rec_inference_model_dir:../inference
-o Global.infer_imgs:../dataset/Aliproduct/demo_test/
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
\ No newline at end of file
===========================train_params===========================
model_name:MobileNetV3_large_x1_0
python:python3.7
gpu_list:0
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:pact_train
norm_train:null
pact_train:tools/train.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Slim.quant.name=pact -o Arch.pretrained=True -o Optimizer.lr.learning_rate=0.01
fpgm_train:null
distill_train:null
to_static_train:-o Global.to_static=True
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml -o Slim.quant.name=pact
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:null
quant_export:tools/export_model.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_quantization.yaml -o Slim.quant.name=pact
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
null:null
===========================train_benchmark_params==========================
batch_size:256|640
fp_items:fp32
epoch:1
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
\ No newline at end of file
===========================train_params===========================
model_name:PPHGNet_small
python:python3.7
gpu_list:0
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:pact_train
norm_train:null
pact_train:tools/train.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_small_pact.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Slim.quant.name=pact -o Arch.pretrained=True -o Optimizer.lr.learning_rate=0.01
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_small_pact.yaml -o Slim.quant.name=pact
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:null
quant_export:tools/export_model.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_small_pact.yaml -o Slim.quant.name=pact
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_small_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml -o PreProcess.transform_ops.0.ResizeImage.resize_short=236
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
===========================train_params===========================
model_name:PPLCNet_x1_0
python:python3.7
gpu_list:0
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:pact_train
norm_train:null
pact_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x1_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Slim.quant.name=pact -o Arch.pretrained=True -o Optimizer.lr.learning_rate=0.08
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x1_0.yaml -o Slim.quant.name=pact
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:null
quant_export:tools/export_model.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x1_0.yaml -o Slim.quant.name=pact
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
\ No newline at end of file
===========================train_params===========================
model_name:PPLCNetV2_base
python:python3.7
gpu_list:0
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.first_bs:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:pact_train
norm_train:null
pact_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNetV2/PPLCNetV2_base.yaml -o Global.seed=1234 -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Slim.quant.name=pact -o Arch.pretrained=True -o Optimizer.lr.learning_rate=0.08
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNetV2/PPLCNetV2_base.yaml -o Slim.quant.name=pact
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:null
quant_export:tools/export_model.py -c ppcls/configs/ImageNet/PPLCNetV2/PPLCNetV2_base.yaml -o Slim.quant.name=pact
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNetV2_base_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
===========================train_params===========================
model_name:ResNet50
python:python3.7
gpu_list:0
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:pact_train
norm_train:null
pact_train:tools/train.py -c ppcls/configs/ImageNet/ResNet/ResNet50.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Slim.quant.name=pact -o Arch.pretrained=True -o Optimizer.lr.learning_rate=0.01
fpgm_train:null
distill_train:null
to_static_train:-o Global.to_static=True
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/ResNet/ResNet50.yaml -o Slim.quant.name=pact
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:null
quant_export:tools/export_model.py -c ppcls/configs/ImageNet/ResNet/ResNet50.yaml -o Slim.quant.name=pact
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
null:null
===========================train_benchmark_params==========================
batch_size:128
fp_items:fp32
epoch:1
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
\ No newline at end of file
===========================train_params===========================
model_name:ResNet50_vd
python:python3.7
gpu_list:0
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=200
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:pact_train
norm_train:null
pact_train:tools/train.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Slim.quant.name=pact -o Arch.pretrained=True -o Optimizer.lr.learning_rate=0.01
fpgm_train:null
distill_train:null
to_static_train:-o Global.to_static=True
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml -o Slim.quant.name=pact
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:null
quant_export:tools/export_model.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml -o Slim.quant.name=pact
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
null:null
===========================train_benchmark_params==========================
batch_size:128
fp_items:fp32
epoch:1
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
\ No newline at end of file
===========================train_params===========================
model_name:SwinTransformer_tiny_patch4_window7_224
python:python3.7
gpu_list:0
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:pact_train
norm_train:null
pact_train:tools/train.py -c ppcls/configs/ImageNet/SwinTransformer/SwinTransformer_tiny_patch4_window7_224.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Slim.quant.name=pact -o Arch.pretrained=True -o Optimizer.lr.learning_rate=0.01
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/SwinTransformer/SwinTransformer_tiny_patch4_window7_224.yaml -o Slim.quant.name=pact
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:null
quant_export:tools/export_model.py -c ppcls/configs/ImageNet/SwinTransformer/SwinTransformer_tiny_patch4_window7_224.yaml -o Slim.quant.name=pact
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_tiny_patch4_window7_224_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
null:null
===========================train_benchmark_params==========================
batch_size:64|104
fp_items:fp32
epoch:1
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
\ No newline at end of file
......@@ -32,6 +32,7 @@ train_param_key1=$(func_parser_key "${lines[12]}")
train_param_value1=$(func_parser_value "${lines[12]}")
trainer_list=$(func_parser_value "${lines[14]}")
trainer_norm=$(func_parser_key "${lines[15]}")
norm_trainer=$(func_parser_value "${lines[15]}")
pact_key=$(func_parser_key "${lines[16]}")
......@@ -88,17 +89,17 @@ benchmark_value=$(func_parser_value "${lines[49]}")
infer_key1=$(func_parser_key "${lines[50]}")
infer_value1=$(func_parser_value "${lines[50]}")
if [ ! $epoch_num ]; then
epoch_num=2
epoch_num=2
fi
if [[ $MODE = 'benchmark_train' ]]; then
epoch_num=1
epoch_num=1
fi
LOG_PATH="./test_tipc/output/${model_name}"
LOG_PATH="./test_tipc/output/${model_name}/${MODE}"
mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results_python.log"
function func_inference(){
function func_inference() {
IFS='|'
_python=$1
_script=$2
......@@ -110,9 +111,9 @@ function func_inference(){
for use_gpu in ${use_gpu_list[*]}; do
if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
for use_mkldnn in ${use_mkldnn_list[*]}; do
if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
continue
fi
# if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
# continue
# fi
for threads in ${cpu_threads_list[*]}; do
for batch_size in ${batch_size_list[*]}; do
_save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
......@@ -136,9 +137,9 @@ function func_inference(){
if [ ${precision} = "True" ] && [ ${use_trt} = "False" ]; then
continue
fi
if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
continue
fi
# if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
# continue
# fi
for batch_size in ${batch_size_list[*]}; do
_save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
......@@ -162,18 +163,18 @@ function func_inference(){
}
if [[ ${MODE} = "whole_infer" ]] || [[ ${MODE} = "klquant_whole_infer" ]]; then
IFS="|"
infer_export_flag=(${infer_export_flag})
if [ ${infer_export_flag} != "null" ] && [ ${infer_export_flag} != "False" ]; then
rm -rf ${infer_model_dir_list/..\//}
export_cmd="${python} ${norm_export} -o Global.pretrained_model=${model_name}_pretrained -o Global.save_inference_dir=${infer_model_dir_list/..\//}"
eval $export_cmd
fi
IFS="|"
infer_export_flag=(${infer_export_flag})
if [ ${infer_export_flag} != "null" ] && [ ${infer_export_flag} != "False" ]; then
rm -rf ${infer_model_dir_list/..\//}
export_cmd="${python} ${norm_export} -o Global.pretrained_model=${model_name}_pretrained -o Global.save_inference_dir=${infer_model_dir_list/..\//}"
eval $export_cmd
fi
fi
if [[ ${MODE} = "whole_infer" ]]; then
GPUID=$3
if [ ${#GPUID} -le 0 ];then
if [ ${#GPUID} -le 0 ]; then
env=" "
else
env="export CUDA_VISIBLE_DEVICES=${GPUID}"
......@@ -194,18 +195,18 @@ if [[ ${MODE} = "whole_infer" ]]; then
elif [[ ${MODE} = "klquant_whole_infer" ]]; then
# for kl_quant
if [ ${kl_quant_cmd_value} != "null" ] && [ ${kl_quant_cmd_value} != "False" ]; then
echo "kl_quant"
command="${python} ${kl_quant_cmd_value}"
eval $command
last_status=${PIPESTATUS[0]}
status_check $last_status "${command}" "${status_log}" "${model_name}"
cd inference/quant_post_static_model
ln -s __model__ inference.pdmodel
ln -s __params__ inference.pdiparams
cd ../../deploy
is_quant=True
echo "kl_quant"
command="${python} ${kl_quant_cmd_value}"
eval $command
last_status=${PIPESTATUS[0]}
status_check $last_status "${command}" "${status_log}" "${model_name}"
cd inference/quant_post_static_model
ln -s __model__ inference.pdmodel
ln -s __params__ inference.pdiparams
cd ../../deploy
is_quant=True
func_inference "${python}" "${inference_py}" "${infer_model_dir_list}/quant_post_static_model" "../${LOG_PATH}" "${infer_img_dir}" ${is_quant}
cd ..
cd ..
fi
else
IFS="|"
......@@ -215,12 +216,12 @@ else
train_use_gpu=${USE_GPU_KEY[Count]}
Count=$(($Count + 1))
ips=""
if [ ${gpu} = "-1" ];then
if [ ${gpu} = "-1" ]; then
env=""
elif [ ${#gpu} -le 1 ];then
elif [ ${#gpu} -le 1 ]; then
env="export CUDA_VISIBLE_DEVICES=${gpu}"
eval ${env}
elif [ ${#gpu} -le 15 ];then
elif [ ${#gpu} -le 15 ]; then
IFS=","
array=(${gpu})
env="export CUDA_VISIBLE_DEVICES=${array[0]}"
......@@ -270,7 +271,7 @@ else
set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${train_use_gpu_value}")
if [ ${#ips} -le 15 ];then
if [ ${#ips} -le 15 ]; then
# if length of ips >= 15, then it is seen as multi-machine
# 15 is the min length of ips info for multi-machine: 0.0.0.0,0.0.0.0
save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
......@@ -289,28 +290,28 @@ else
# fi
set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
if [ ${#gpu} -le 2 ];then # train with cpu or single gpu
if [ ${#gpu} -le 2 ]; then # train with cpu or single gpu
cmd="${python} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} "
elif [ ${#ips} -le 15 ];then # train with multi-gpu
elif [ ${#ips} -le 15 ]; then # train with multi-gpu
cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1}"
else # train with multi-machine
else # train with multi-machine
cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1}"
fi
# run train
eval "unset CUDA_VISIBLE_DEVICES"
# export FLAGS_cudnn_deterministic=True
sleep 5
eval "unset CUDA_VISIBLE_DEVICES"
# export FLAGS_cudnn_deterministic=True
sleep 5
eval $cmd
status_check $? "${cmd}" "${status_log}" "${model_name}"
sleep 5
if [[ $FILENAME == *GeneralRecognition* ]]; then
set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/RecModel/${train_model_name}")
else
if [[ $FILENAME == *GeneralRecognition* ]]; then
set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/RecModel/${train_model_name}")
else
set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${model_name}/${train_model_name}")
fi
fi
# save norm trained models to set pretrain for pact training and fpgm training
if [ ${trainer} = ${trainer_norm} ]; then
if [[ ${trainer} = ${trainer_norm} || ${trainer} = ${pact_key} ]]; then
load_norm_train_model=${set_eval_pretrain}
fi
# run eval
......@@ -325,11 +326,11 @@ else
if [ ${run_export} != "null" ]; then
# run export model
save_infer_path="${save_log}"
if [[ $FILENAME == *GeneralRecognition* ]]; then
set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/RecModel/${train_model_name}")
else
set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${model_name}/${train_model_name}")
fi
if [[ $FILENAME == *GeneralRecognition* ]]; then
set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/RecModel/${train_model_name}")
else
set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${model_name}/${train_model_name}")
fi
set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_path}")
export_cmd="${python} ${run_export} ${set_export_weight} ${set_save_infer_key}"
eval $export_cmd
......@@ -338,12 +339,12 @@ else
#run inference
eval $env
save_infer_path="${save_log}"
cd deploy
cd deploy
func_inference "${python}" "${inference_py}" "../${save_infer_path}" "../${LOG_PATH}" "${infer_img_dir}" "${flag_quant}"
cd ..
cd ..
fi
eval "unset CUDA_VISIBLE_DEVICES"
done # done with: for trainer in ${trainer_list[*]}; do
done # done with: for autocast in ${autocast_list[*]}; do
done # done with: for gpu in ${gpu_list[*]}; do
fi # end if [ ${MODE} = "infer" ]; then
done # done with: for trainer in ${trainer_list[*]}; do
done # done with: for autocast in ${autocast_list[*]}; do
done # done with: for gpu in ${gpu_list[*]}; do
fi # end if [ ${MODE} = "infer" ]; then
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册