提交 2a31f5d5 编写于 作者: S shippingwang

f

......@@ -15,7 +15,7 @@ topk: 5
image_shape: [3, 224, 224]
LEARNING_RATE:
function: 'CosineWarmup'
function: 'Cosine'
params:
lr: 2.6
warmup_epoch: 5
......
......@@ -15,7 +15,7 @@ topk: 5
image_shape: [3, 224, 224]
LEARNING_RATE:
function: 'CosineWarmup'
function: 'Cosine'
params:
lr: 1.3
warmup_epoch: 5
......
......@@ -15,7 +15,7 @@ topk: 5
image_shape: [3, 224, 224]
LEARNING_RATE:
function: 'CosineWarmup'
function: 'Cosine'
params:
lr: 1.3
warmup_epoch: 5
......
......@@ -15,7 +15,7 @@ topk: 5
image_shape: [3, 224, 224]
LEARNING_RATE:
function: 'CosineWarmup'
function: 'Cosine'
params:
lr: 2.6
warmup_epoch: 5
......
......@@ -15,7 +15,7 @@ topk: 5
image_shape: [3, 224, 224]
LEARNING_RATE:
function: 'CosineWarmup'
function: 'Cosine'
params:
lr: 0.65
warmup_epoch: 5
......
......@@ -14,7 +14,7 @@ topk: 5
image_shape: [3, 224, 224]
LEARNING_RATE:
function: 'CosineWarmup'
function: 'Cosine'
params:
lr: 2.6
warmup_epoch: 5
......
......@@ -15,7 +15,7 @@ topk: 5
image_shape: [3, 224, 224]
LEARNING_RATE:
function: 'CosineWarmup'
function: 'Cosine'
params:
lr: 2.6
warmup_epoch: 5
......
......@@ -15,7 +15,7 @@ topk: 5
image_shape: [3, 224, 224]
LEARNING_RATE:
function: 'CosineWarmup'
function: 'Cosine'
params:
lr: 2.6
warmup_epoch: 5
......
......@@ -15,7 +15,7 @@ topk: 5
image_shape: [3, 224, 224]
LEARNING_RATE:
function: 'CosineWarmup'
function: 'Cosine'
params:
lr: 2.6
warmup_epoch: 5
......
......@@ -15,7 +15,7 @@ topk: 5
image_shape: [3, 224, 224]
LEARNING_RATE:
function: 'CosineWarmup'
function: 'Cosine'
params:
lr: 1.3
warmup_epoch: 5
......
......@@ -14,7 +14,7 @@ topk: 5
image_shape: [3, 224, 224]
LEARNING_RATE:
function: 'CosineWarmup'
function: 'Cosine'
params:
lr: 0.5
warmup_epoch: 5
......
......@@ -14,7 +14,7 @@ topk: 5
image_shape: [3, 224, 224]
LEARNING_RATE:
function: 'CosineWarmup'
function: 'Cosine'
params:
lr: 0.5
warmup_epoch: 5
......
......@@ -14,7 +14,7 @@ topk: 5
image_shape: [3, 224, 224]
LEARNING_RATE:
function: 'CosineWarmup'
function: 'Cosine'
params:
lr: 0.5
warmup_epoch: 5
......
......@@ -14,7 +14,7 @@ topk: 5
image_shape: [3, 224, 224]
LEARNING_RATE:
function: 'CosineWarmup'
function: 'Cosine'
params:
lr: 0.5
warmup_epoch: 5
......
......@@ -14,7 +14,7 @@ topk: 5
image_shape: [3, 224, 224]
LEARNING_RATE:
function: 'CosineWarmup'
function: 'Cosine'
params:
lr: 0.5
warmup_epoch: 5
......
......@@ -14,7 +14,7 @@ topk: 5
image_shape: [3, 224, 224]
LEARNING_RATE:
function: 'CosineWarmup'
function: 'Cosine'
params:
lr: 0.25
warmup_epoch: 5
......
......@@ -14,7 +14,7 @@ topk: 5
image_shape: [3, 224, 224]
LEARNING_RATE:
function: 'CosineWarmup'
function: 'Cosine'
params:
lr: 0.25
warmup_epoch: 5
......
# 特征图可视化指南
## 一、概述
特征图是输入图片在卷积网络中的特征表达,对特征图的研究可以有利于我们对于模型的理解与设计,所以基于动态图我们使用本工具来可视化特征图。
## 二、准备工作
首先需要选定研究的模型,本文设定ResNet50作为研究模型,将resnet.py从[模型库](../../../ppcls/modeling/architecture/)拷贝到当前目录下,并下载预训练模型[预训练模型](../../zh_CN/models/models_intro), 复制resnet50的模型链接,使用下列命令下载并解压预训练模型。
```bash
wget The Link for Pretrained Model
tar -xf Downloaded Pretrained Model
```
以resnet50为例:
```bash
wget https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar
tar -xf ResNet50_pretrained.tar
```
## 三、修改模型
找到我们所需要的特征图位置,设置self.fm将其fetch出来,本文以resnet50中的stem层之后的特征图为例。
在fm_vis.py中修改模型的名字。
在ResNet50的__init__函数中定义self.fm
```python
self.fm = None
```
在ResNet50的forward函数中指定特征图
```python
def forward(self, inputs):
y = self.conv(inputs)
self.fm = y
y = self.pool2d_max(y)
for bottleneck_block in self.bottleneck_block_list:
y = bottleneck_block(y)
y = self.pool2d_avg(y)
y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_output])
y = self.out(y)
return y, self.fm
```
执行函数
```bash
python tools/feature_maps_visualization/fm_vis.py -i the image you want to test \
-c channel_num -p pretrained model \
--show whether to show \
--interpolation interpolation method\
--save_path where to save \
--use_gpu whether to use gpu
```
参数说明:
+ `-i`:待预测的图片文件路径,如 `./test.jpeg`
+ `-c`:特征图维度,如 `./resnet50_vd/model`
+ `-p`:权重文件路径,如 `./ResNet50_pretrained/`
+ `--show`:是否展示图片,默认值 False
+ `--interpolation`: 图像插值方式, 默认值 1
+ `--save_path`:保存路径,如:`./tools/`
+ `--use_gpu`:是否使用 GPU 预测,默认值:True
## 四、结果
输入图片:
![](../../../tools/feature_maps_visualization/test.jpg)
输出特征图:
![](../../../tools/feature_maps_visualization/fm.jpg)
......@@ -12,7 +12,19 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from .resnet_name import *
from .resnet import ResNet18, ResNet34, ResNet50, ResNet101, ResNet152
from .resnet_vc import ResNet18_vc, ResNet34_vc, ResNet50_vc, ResNet101_vc, ResNet152_vc
from .resnet_vd import ResNet18_vd, ResNet34_vd, ResNet50_vd, ResNet101_vd, ResNet152_vd, ResNet200_vd
from .resnext import ResNeXt50_32x4d, ResNeXt50_64x4d, ResNeXt101_32x4d, ResNeXt101_64x4d, ResNeXt152_32x4d, ResNeXt152_64x4d
from .resnext_vd import ResNeXt50_vd_32x4d, ResNeXt50_vd_64x4d, ResNeXt101_vd_32x4d, ResNeXt101_vd_64x4d, ResNeXt152_vd_32x4d, ResNeXt152_vd_64x4d
from .res2net import Res2Net50_48w_2s, Res2Net50_26w_4s, Res2Net50_14w_8s, Res2Net50_48w_2s, Res2Net50_26w_6s, Res2Net50_26w_8s, Res2Net101_26w_4s, Res2Net152_26w_4s, Res2Net200_26w_4s
from .res2net_vd import Res2Net50_vd_48w_2s, Res2Net50_vd_26w_4s, Res2Net50_vd_14w_8s, Res2Net50_vd_48w_2s, Res2Net50_vd_26w_6s, Res2Net50_vd_26w_8s, Res2Net101_vd_26w_4s, Res2Net152_vd_26w_4s, Res2Net200_vd_26w_4s
from .se_resnet_vd import SE_ResNet18_vd, SE_ResNet34_vd, SE_ResNet50_vd, SE_ResNet101_vd, SE_ResNet152_vd, SE_ResNet200_vd
from .se_resnext_vd import SE_ResNeXt50_vd_32x4d, SE_ResNeXt50_vd_32x4d, SENet154_vd
from .dpn import DPN68
from .densenet import DenseNet121
from .hrnet import HRNet_W18_C
\ No newline at end of file
from .hrnet import HRNet_W18_C
from .mobilenet_v1 import MobileNetV1_x0_25, MobileNetV1_x0_5, MobileNetV1_x0_75, MobileNetV1
from .mobilenet_v2 import MobileNetV2_x0_25, MobileNetV2_x0_5, MobileNetV2_x0_75, MobileNetV2, MobileNetV2_x1_5, MobileNetV2_x2_0
from .mobilenet_v3 import MobileNetV3_small_x0_35, MobileNetV3_small_x0_5, MobileNetV3_small_x0_75, MobileNetV3_small_x1_0, MobileNetV3_small_x1_25, MobileNetV3_large_x0_35, MobileNetV3_large_x0_5, MobileNetV3_large_x0_75, MobileNetV3_large_x1_0, MobileNetV3_large_x1_25
from .shufflenet_v2 import ShuffleNetV2_x0_25, ShuffleNetV2_x0_33, ShuffleNetV2_x0_5, ShuffleNetV2, ShuffleNetV2_x1_5, ShuffleNetV2_x2_0, ShuffleNetV2_swish
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
from paddle.fluid.initializer import MSRA
import math
__all__ = [
'MobileNetV1', 'MobileNetV1_x0_25', 'MobileNetV1_x0_5', 'MobileNetV1_x1_0',
'MobileNetV1_x0_75'
"MobileNetV1_x0_25", "MobileNetV1_x0_5", "MobileNetV1_x0_75", "MobileNetV1"
]
class MobileNetV1():
def __init__(self, scale=1.0):
self.scale = scale
def net(self, input, class_dim=1000):
scale = self.scale
# conv1: 112x112
input = self.conv_bn_layer(
input,
filter_size=3,
channels=3,
num_filters=int(32 * scale),
stride=2,
padding=1,
name="conv1")
# 56x56
input = self.depthwise_separable(
input,
num_filters1=32,
num_filters2=64,
num_groups=32,
stride=1,
scale=scale,
name="conv2_1")
input = self.depthwise_separable(
input,
num_filters1=64,
num_filters2=128,
num_groups=64,
stride=2,
scale=scale,
name="conv2_2")
# 28x28
input = self.depthwise_separable(
input,
num_filters1=128,
num_filters2=128,
num_groups=128,
stride=1,
scale=scale,
name="conv3_1")
input = self.depthwise_separable(
input,
num_filters1=128,
num_filters2=256,
num_groups=128,
stride=2,
scale=scale,
name="conv3_2")
# 14x14
input = self.depthwise_separable(
input,
num_filters1=256,
num_filters2=256,
num_groups=256,
stride=1,
scale=scale,
name="conv4_1")
input = self.depthwise_separable(
input,
num_filters1=256,
num_filters2=512,
num_groups=256,
stride=2,
scale=scale,
name="conv4_2")
class ConvBNLayer(fluid.dygraph.Layer):
def __init__(self,
num_channels,
filter_size,
num_filters,
stride,
padding,
channels=None,
num_groups=1,
act='relu',
use_cudnn=True,
name=None):
super(ConvBNLayer, self).__init__()
# 14x14
for i in range(5):
input = self.depthwise_separable(
input,
num_filters1=512,
num_filters2=512,
num_groups=512,
stride=1,
scale=scale,
name="conv5" + "_" + str(i + 1))
# 7x7
input = self.depthwise_separable(
input,
num_filters1=512,
num_filters2=1024,
num_groups=512,
stride=2,
scale=scale,
name="conv5_6")
input = self.depthwise_separable(
input,
num_filters1=1024,
num_filters2=1024,
num_groups=1024,
stride=1,
scale=scale,
name="conv6")
input = fluid.layers.pool2d(
input=input, pool_type='avg', global_pooling=True)
output = fluid.layers.fc(input=input,
size=class_dim,
param_attr=ParamAttr(
initializer=MSRA(), name="fc7_weights"),
bias_attr=ParamAttr(name="fc7_offset"))
return output
def conv_bn_layer(self,
input,
filter_size,
num_filters,
stride,
padding,
channels=None,
num_groups=1,
act='relu',
use_cudnn=True,
name=None):
conv = fluid.layers.conv2d(
input=input,
self._conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
......@@ -161,58 +56,214 @@ class MobileNetV1():
param_attr=ParamAttr(
initializer=MSRA(), name=name + "_weights"),
bias_attr=False)
bn_name = name + "_bn"
return fluid.layers.batch_norm(
input=conv,
self._batch_norm = BatchNorm(
num_filters,
act=act,
param_attr=ParamAttr(name=bn_name + "_scale"),
bias_attr=ParamAttr(name=bn_name + "_offset"),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def depthwise_separable(self,
input,
num_filters1,
num_filters2,
num_groups,
stride,
scale,
name=None):
depthwise_conv = self.conv_bn_layer(
input=input,
filter_size=3,
param_attr=ParamAttr(name + "_bn_scale"),
bias_attr=ParamAttr(name + "_bn_offset"),
moving_mean_name=name + "_bn_mean",
moving_variance_name=name + "_bn_variance")
def forward(self, inputs):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class DepthwiseSeparable(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters1,
num_filters2,
num_groups,
stride,
scale,
name=None):
super(DepthwiseSeparable, self).__init__()
self._depthwise_conv = ConvBNLayer(
num_channels=num_channels,
num_filters=int(num_filters1 * scale),
filter_size=3,
stride=stride,
padding=1,
num_groups=int(num_groups * scale),
use_cudnn=False,
name=name + "_dw")
pointwise_conv = self.conv_bn_layer(
input=depthwise_conv,
self._pointwise_conv = ConvBNLayer(
num_channels=int(num_filters1 * scale),
filter_size=1,
num_filters=int(num_filters2 * scale),
stride=1,
padding=0,
name=name + "_sep")
return pointwise_conv
def forward(self, inputs):
y = self._depthwise_conv(inputs)
y = self._pointwise_conv(y)
return y
class MobileNet(fluid.dygraph.Layer):
def __init__(self, scale=1.0, class_dim=1000):
super(MobileNet, self).__init__()
self.scale = scale
self.block_list = []
self.conv1 = ConvBNLayer(
num_channels=3,
filter_size=3,
channels=3,
num_filters=int(32 * scale),
stride=2,
padding=1,
name="conv1")
conv2_1 = self.add_sublayer(
"conv2_1",
sublayer=DepthwiseSeparable(
num_channels=int(32 * scale),
num_filters1=32,
num_filters2=64,
num_groups=32,
stride=1,
scale=scale,
name="conv2_1"))
self.block_list.append(conv2_1)
conv2_2 = self.add_sublayer(
"conv2_2",
sublayer=DepthwiseSeparable(
num_channels=int(64 * scale),
num_filters1=64,
num_filters2=128,
num_groups=64,
stride=2,
scale=scale,
name="conv2_2"))
self.block_list.append(conv2_2)
conv3_1 = self.add_sublayer(
"conv3_1",
sublayer=DepthwiseSeparable(
num_channels=int(128 * scale),
num_filters1=128,
num_filters2=128,
num_groups=128,
stride=1,
scale=scale,
name="conv3_1"))
self.block_list.append(conv3_1)
conv3_2 = self.add_sublayer(
"conv3_2",
sublayer=DepthwiseSeparable(
num_channels=int(128 * scale),
num_filters1=128,
num_filters2=256,
num_groups=128,
stride=2,
scale=scale,
name="conv3_2"))
self.block_list.append(conv3_2)
conv4_1 = self.add_sublayer(
"conv4_1",
sublayer=DepthwiseSeparable(
num_channels=int(256 * scale),
num_filters1=256,
num_filters2=256,
num_groups=256,
stride=1,
scale=scale,
name="conv4_1"))
self.block_list.append(conv4_1)
conv4_2 = self.add_sublayer(
"conv4_2",
sublayer=DepthwiseSeparable(
num_channels=int(256 * scale),
num_filters1=256,
num_filters2=512,
num_groups=256,
stride=2,
scale=scale,
name="conv4_2"))
self.block_list.append(conv4_2)
for i in range(5):
conv5 = self.add_sublayer(
"conv5_" + str(i + 1),
sublayer=DepthwiseSeparable(
num_channels=int(512 * scale),
num_filters1=512,
num_filters2=512,
num_groups=512,
stride=1,
scale=scale,
name="conv5_" + str(i + 1)))
self.block_list.append(conv5)
conv5_6 = self.add_sublayer(
"conv5_6",
sublayer=DepthwiseSeparable(
num_channels=int(512 * scale),
num_filters1=512,
num_filters2=1024,
num_groups=512,
stride=2,
scale=scale,
name="conv5_6"))
self.block_list.append(conv5_6)
conv6 = self.add_sublayer(
"conv6",
sublayer=DepthwiseSeparable(
num_channels=int(1024 * scale),
num_filters1=1024,
num_filters2=1024,
num_groups=1024,
stride=1,
scale=scale,
name="conv6"))
self.block_list.append(conv6)
self.pool2d_avg = Pool2D(pool_type='avg', global_pooling=True)
self.out = Linear(
int(1024 * scale),
class_dim,
param_attr=ParamAttr(
initializer=MSRA(), name="fc7_weights"),
bias_attr=ParamAttr(name="fc7_offset"))
def forward(self, inputs):
y = self.conv1(inputs)
for block in self.block_list:
y = block(y)
y = self.pool2d_avg(y)
y = fluid.layers.reshape(y, shape=[-1, int(1024 * self.scale)])
y = self.out(y)
return y
def MobileNetV1_x0_25():
model = MobileNetV1(scale=0.25)
def MobileNetV1_x0_25(**args):
model = MobileNet(scale=0.25, **args)
return model
def MobileNetV1_x0_5():
model = MobileNetV1(scale=0.5)
def MobileNetV1_x0_5(**args):
model = MobileNet(scale=0.5, **args)
return model
def MobileNetV1_x1_0():
model = MobileNetV1(scale=1.0)
def MobileNetV1_x0_75(**args):
model = MobileNet(scale=0.75, **args)
return model
def MobileNetV1_x0_75():
model = MobileNetV1(scale=0.75)
def MobileNetV1(**args):
model = MobileNet(scale=1.0, **args)
return model
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
import math
__all__ = [
'MobileNetV2_x0_25', 'MobileNetV2_x0_5'
'MobileNetV2_x0_75', 'MobileNetV2_x1_0', 'MobileNetV2_x1_5',
'MobileNetV2_x2_0', 'MobileNetV2'
"MobileNetV2_x0_25", "MobileNetV2_x0_5", "MobileNetV2_x0_75",
"MobileNetV2", "MobileNetV2_x1_5", "MobileNetV2_x2_0"
]
class MobileNetV2():
def __init__(self, scale=1.0):
self.scale = scale
def net(self, input, class_dim=1000):
scale = self.scale
bottleneck_params_list = [
(1, 16, 1, 1),
(6, 24, 2, 2),
(6, 32, 3, 2),
(6, 64, 4, 2),
(6, 96, 3, 1),
(6, 160, 3, 2),
(6, 320, 1, 1),
]
#conv1
input = self.conv_bn_layer(
input,
num_filters=int(32 * scale),
filter_size=3,
stride=2,
padding=1,
if_act=True,
name='conv1_1')
# bottleneck sequences
i = 1
in_c = int(32 * scale)
for layer_setting in bottleneck_params_list:
t, c, n, s = layer_setting
i += 1
input = self.invresi_blocks(
input=input,
in_c=in_c,
t=t,
c=int(c * scale),
n=n,
s=s,
name='conv' + str(i))
in_c = int(c * scale)
#last_conv
input = self.conv_bn_layer(
input=input,
num_filters=int(1280 * scale) if scale > 1.0 else 1280,
filter_size=1,
stride=1,
padding=0,
if_act=True,
name='conv9')
input = fluid.layers.pool2d(
input=input, pool_type='avg', global_pooling=True)
output = fluid.layers.fc(input=input,
size=class_dim,
param_attr=ParamAttr(name='fc10_weights'),
bias_attr=ParamAttr(name='fc10_offset'))
return output
def conv_bn_layer(self,
input,
filter_size,
num_filters,
stride,
padding,
channels=None,
num_groups=1,
if_act=True,
name=None,
use_cudnn=True):
conv = fluid.layers.conv2d(
input=input,
class ConvBNLayer(fluid.dygraph.Layer):
def __init__(self,
num_channels,
filter_size,
num_filters,
stride,
padding,
channels=None,
num_groups=1,
name=None,
use_cudnn=True):
super(ConvBNLayer, self).__init__()
self._conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
......@@ -106,125 +53,197 @@ class MobileNetV2():
groups=num_groups,
act=None,
use_cudnn=use_cudnn,
param_attr=ParamAttr(name=name + '_weights'),
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
bn_name = name + '_bn'
bn = fluid.layers.batch_norm(
input=conv,
param_attr=ParamAttr(name=bn_name + "_scale"),
bias_attr=ParamAttr(name=bn_name + "_offset"),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
self._batch_norm = BatchNorm(
num_filters,
param_attr=ParamAttr(name=name + "_bn_scale"),
bias_attr=ParamAttr(name=name + "_bn_offset"),
moving_mean_name=name + "_bn_mean",
moving_variance_name=name + "_bn_variance")
def forward(self, inputs, if_act=True):
y = self._conv(inputs)
y = self._batch_norm(y)
if if_act:
return fluid.layers.relu6(bn)
else:
return bn
def shortcut(self, input, data_residual):
return fluid.layers.elementwise_add(input, data_residual)
def inverted_residual_unit(self,
input,
num_in_filter,
num_filters,
ifshortcut,
stride,
filter_size,
padding,
expansion_factor,
name=None):
num_expfilter = int(round(num_in_filter * expansion_factor))
y = fluid.layers.relu6(y)
return y
channel_expand = self.conv_bn_layer(
input=input,
class InvertedResidualUnit(fluid.dygraph.Layer):
def __init__(self, num_channels, num_in_filter, num_filters, stride,
filter_size, padding, expansion_factor, name):
super(InvertedResidualUnit, self).__init__()
num_expfilter = int(round(num_in_filter * expansion_factor))
self._expand_conv = ConvBNLayer(
num_channels=num_channels,
num_filters=num_expfilter,
filter_size=1,
stride=1,
padding=0,
num_groups=1,
if_act=True,
name=name + '_expand')
name=name + "_expand")
bottleneck_conv = self.conv_bn_layer(
input=channel_expand,
self._bottleneck_conv = ConvBNLayer(
num_channels=num_expfilter,
num_filters=num_expfilter,
filter_size=filter_size,
stride=stride,
padding=padding,
num_groups=num_expfilter,
if_act=True,
name=name + '_dwise',
use_cudnn=False)
use_cudnn=False,
name=name + "_dwise")
linear_out = self.conv_bn_layer(
input=bottleneck_conv,
self._linear_conv = ConvBNLayer(
num_channels=num_expfilter,
num_filters=num_filters,
filter_size=1,
stride=1,
padding=0,
num_groups=1,
if_act=False,
name=name + '_linear')
name=name + "_linear")
def forward(self, inputs, ifshortcut):
y = self._expand_conv(inputs, if_act=True)
y = self._bottleneck_conv(y, if_act=True)
y = self._linear_conv(y, if_act=False)
if ifshortcut:
out = self.shortcut(input=input, data_residual=linear_out)
return out
else:
return linear_out
def invresi_blocks(self, input, in_c, t, c, n, s, name=None):
first_block = self.inverted_residual_unit(
input=input,
y = fluid.layers.elementwise_add(inputs, y)
return y
class InvresiBlocks(fluid.dygraph.Layer):
def __init__(self, in_c, t, c, n, s, name):
super(InvresiBlocks, self).__init__()
self._first_block = InvertedResidualUnit(
num_channels=in_c,
num_in_filter=in_c,
num_filters=c,
ifshortcut=False,
stride=s,
filter_size=3,
padding=1,
expansion_factor=t,
name=name + '_1')
last_residual_block = first_block
last_c = c
name=name + "_1")
self._block_list = []
for i in range(1, n):
last_residual_block = self.inverted_residual_unit(
input=last_residual_block,
num_in_filter=last_c,
num_filters=c,
ifshortcut=True,
stride=1,
filter_size=3,
padding=1,
expansion_factor=t,
name=name + '_' + str(i + 1))
return last_residual_block
def MobileNetV2_x0_25():
model = MobileNetV2(scale=0.25)
block = self.add_sublayer(
name + "_" + str(i + 1),
sublayer=InvertedResidualUnit(
num_channels=c,
num_in_filter=c,
num_filters=c,
stride=1,
filter_size=3,
padding=1,
expansion_factor=t,
name=name + "_" + str(i + 1)))
self._block_list.append(block)
def forward(self, inputs):
y = self._first_block(inputs, ifshortcut=False)
for block in self._block_list:
y = block(y, ifshortcut=True)
return y
class MobileNet(fluid.dygraph.Layer):
def __init__(self, class_dim=1000, scale=1.0):
super(MobileNet, self).__init__()
self.scale = scale
self.class_dim = class_dim
bottleneck_params_list = [
(1, 16, 1, 1),
(6, 24, 2, 2),
(6, 32, 3, 2),
(6, 64, 4, 2),
(6, 96, 3, 1),
(6, 160, 3, 2),
(6, 320, 1, 1),
]
self.conv1 = ConvBNLayer(
num_channels=3,
num_filters=int(32 * scale),
filter_size=3,
stride=2,
padding=1,
name="conv1_1")
self.block_list = []
i = 1
in_c = int(32 * scale)
for layer_setting in bottleneck_params_list:
t, c, n, s = layer_setting
i += 1
block = self.add_sublayer(
"conv" + str(i),
sublayer=InvresiBlocks(
in_c=in_c,
t=t,
c=int(c * scale),
n=n,
s=s,
name="conv" + str(i)))
self.block_list.append(block)
in_c = int(c * scale)
self.out_c = int(1280 * scale) if scale > 1.0 else 1280
self.conv9 = ConvBNLayer(
num_channels=in_c,
num_filters=self.out_c,
filter_size=1,
stride=1,
padding=0,
name="conv9")
self.pool2d_avg = Pool2D(pool_type="avg", global_pooling=True)
self.out = Linear(
self.out_c,
class_dim,
param_attr=ParamAttr(name="fc10_weights"),
bias_attr=ParamAttr(name="fc10_offset"))
def forward(self, inputs):
y = self.conv1(inputs, if_act=True)
for block in self.block_list:
y = block(y)
y = self.conv9(y, if_act=True)
y = self.pool2d_avg(y)
y = fluid.layers.reshape(y, shape=[-1, self.out_c])
y = self.out(y)
return y
def MobileNetV2_x0_25(**args):
model = MobileNet(scale=0.25, **args)
return model
def MobileNetV2_x0_5():
model = MobileNetV2(scale=0.5)
def MobileNetV2_x0_5(**args):
model = MobileNet(scale=0.5, **args)
return model
def MobileNetV2_x0_75():
model = MobileNetV2(scale=0.75)
def MobileNetV2_x0_75(**args):
model = MobileNet(scale=0.75, **args)
return model
def MobileNetV2_x1_0():
model = MobileNetV2(scale=1.0)
def MobileNetV2(**args):
model = MobileNet(scale=1.0, **args)
return model
def MobileNetV2_x1_5():
model = MobileNetV2(scale=1.5)
def MobileNetV2_x1_5(**args):
model = MobileNet(scale=1.5, **args)
return model
def MobileNetV2_x2_0():
model = MobileNetV2(scale=2.0)
def MobileNetV2_x2_0(**args):
model = MobileNet(scale=2.0, **args)
return model
......@@ -16,320 +16,342 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
import math
__all__ = [
'MobileNetV3', 'MobileNetV3_small_x0_35', 'MobileNetV3_small_x0_5',
'MobileNetV3_small_x0_75', 'MobileNetV3_small_x1_0',
'MobileNetV3_small_x1_25', 'MobileNetV3_large_x0_35',
'MobileNetV3_large_x0_5', 'MobileNetV3_large_x0_75',
'MobileNetV3_large_x1_0', 'MobileNetV3_large_x1_25'
"MobileNetV3_small_x0_35", "MobileNetV3_small_x0_5",
"MobileNetV3_small_x0_75", "MobileNetV3_small_x1_0",
"MobileNetV3_small_x1_25", "MobileNetV3_large_x0_35",
"MobileNetV3_large_x0_5", "MobileNetV3_large_x0_75",
"MobileNetV3_large_x1_0", "MobileNetV3_large_x1_25"
]
class MobileNetV3():
def __init__(self,
scale=1.0,
model_name='small',
lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0]):
self.scale = scale
self.inplanes = 16
self.lr_mult_list = lr_mult_list
assert len(self.lr_mult_list) == 5, \
"lr_mult_list length in MobileNetV3 must be 5 but got {}!!".format(
len(self.lr_mult_list))
self.curr_stage = 0
def make_divisible(v, divisor=8, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v:
new_v += divisor
return new_v
class MobileNetV3(fluid.dygraph.Layer):
def __init__(self, scale=1.0, model_name="small", class_dim=1000):
super(MobileNetV3, self).__init__()
inplanes = 16
if model_name == "large":
self.cfg = [
# k, exp, c, se, nl, s,
[3, 16, 16, False, 'relu', 1],
[3, 64, 24, False, 'relu', 2],
[3, 72, 24, False, 'relu', 1],
[5, 72, 40, True, 'relu', 2],
[5, 120, 40, True, 'relu', 1],
[5, 120, 40, True, 'relu', 1],
[3, 240, 80, False, 'hard_swish', 2],
[3, 200, 80, False, 'hard_swish', 1],
[3, 184, 80, False, 'hard_swish', 1],
[3, 184, 80, False, 'hard_swish', 1],
[3, 480, 112, True, 'hard_swish', 1],
[3, 672, 112, True, 'hard_swish', 1],
[5, 672, 160, True, 'hard_swish', 2],
[5, 960, 160, True, 'hard_swish', 1],
[5, 960, 160, True, 'hard_swish', 1],
[3, 16, 16, False, "relu", 1],
[3, 64, 24, False, "relu", 2],
[3, 72, 24, False, "relu", 1],
[5, 72, 40, True, "relu", 2],
[5, 120, 40, True, "relu", 1],
[5, 120, 40, True, "relu", 1],
[3, 240, 80, False, "hard_swish", 2],
[3, 200, 80, False, "hard_swish", 1],
[3, 184, 80, False, "hard_swish", 1],
[3, 184, 80, False, "hard_swish", 1],
[3, 480, 112, True, "hard_swish", 1],
[3, 672, 112, True, "hard_swish", 1],
[5, 672, 160, True, "hard_swish", 2],
[5, 960, 160, True, "hard_swish", 1],
[5, 960, 160, True, "hard_swish", 1],
]
self.cls_ch_squeeze = 960
self.cls_ch_expand = 1280
self.lr_interval = 3
elif model_name == "small":
self.cfg = [
# k, exp, c, se, nl, s,
[3, 16, 16, True, 'relu', 2],
[3, 72, 24, False, 'relu', 2],
[3, 88, 24, False, 'relu', 1],
[5, 96, 40, True, 'hard_swish', 2],
[5, 240, 40, True, 'hard_swish', 1],
[5, 240, 40, True, 'hard_swish', 1],
[5, 120, 48, True, 'hard_swish', 1],
[5, 144, 48, True, 'hard_swish', 1],
[5, 288, 96, True, 'hard_swish', 2],
[5, 576, 96, True, 'hard_swish', 1],
[5, 576, 96, True, 'hard_swish', 1],
[3, 16, 16, True, "relu", 2],
[3, 72, 24, False, "relu", 2],
[3, 88, 24, False, "relu", 1],
[5, 96, 40, True, "hard_swish", 2],
[5, 240, 40, True, "hard_swish", 1],
[5, 240, 40, True, "hard_swish", 1],
[5, 120, 48, True, "hard_swish", 1],
[5, 144, 48, True, "hard_swish", 1],
[5, 288, 96, True, "hard_swish", 2],
[5, 576, 96, True, "hard_swish", 1],
[5, 576, 96, True, "hard_swish", 1],
]
self.cls_ch_squeeze = 576
self.cls_ch_expand = 1280
self.lr_interval = 2
else:
raise NotImplementedError(
"mode[{}_model] is not implemented!".format(model_name))
def net(self, input, class_dim=1000):
scale = self.scale
inplanes = self.inplanes
cfg = self.cfg
cls_ch_squeeze = self.cls_ch_squeeze
cls_ch_expand = self.cls_ch_expand
# conv1
conv = self.conv_bn_layer(
input,
self.conv1 = ConvBNLayer(
in_c=3,
out_c=make_divisible(inplanes * scale),
filter_size=3,
num_filters=self.make_divisible(inplanes * scale),
stride=2,
padding=1,
num_groups=1,
if_act=True,
act='hard_swish',
name='conv1')
act="hard_swish",
name="conv1")
self.block_list = []
i = 0
inplanes = self.make_divisible(inplanes * scale)
for layer_cfg in cfg:
conv = self.residual_unit(
input=conv,
num_in_filter=inplanes,
num_mid_filter=self.make_divisible(scale * layer_cfg[1]),
num_out_filter=self.make_divisible(scale * layer_cfg[2]),
act=layer_cfg[4],
stride=layer_cfg[5],
filter_size=layer_cfg[0],
use_se=layer_cfg[3],
name='conv' + str(i + 2))
inplanes = self.make_divisible(scale * layer_cfg[2])
inplanes = make_divisible(inplanes * scale)
for (k, exp, c, se, nl, s) in self.cfg:
self.block_list.append(
ResidualUnit(
in_c=inplanes,
mid_c=make_divisible(scale * exp),
out_c=make_divisible(scale * c),
filter_size=k,
stride=s,
use_se=se,
act=nl,
name="conv" + str(i + 2)))
self.add_sublayer(
sublayer=self.block_list[-1], name="conv" + str(i + 2))
inplanes = make_divisible(scale * c)
i += 1
self.curr_stage = i
conv = self.conv_bn_layer(
input=conv,
self.last_second_conv = ConvBNLayer(
in_c=inplanes,
out_c=make_divisible(scale * self.cls_ch_squeeze),
filter_size=1,
num_filters=self.make_divisible(scale * cls_ch_squeeze),
stride=1,
padding=0,
num_groups=1,
if_act=True,
act='hard_swish',
name='conv_last')
conv = fluid.layers.pool2d(
input=conv, pool_type='avg', global_pooling=True, use_cudnn=False)
conv = fluid.layers.conv2d(
input=conv,
num_filters=cls_ch_expand,
act="hard_swish",
name="conv_last")
self.pool = Pool2D(
pool_type="avg", global_pooling=True, use_cudnn=False)
self.last_conv = Conv2D(
num_channels=make_divisible(scale * self.cls_ch_squeeze),
num_filters=self.cls_ch_expand,
filter_size=1,
stride=1,
padding=0,
act=None,
param_attr=ParamAttr(name='last_1x1_conv_weights'),
param_attr=ParamAttr(name="last_1x1_conv_weights"),
bias_attr=False)
conv = fluid.layers.hard_swish(conv)
drop = fluid.layers.dropout(x=conv, dropout_prob=0.2)
out = fluid.layers.fc(input=drop,
size=class_dim,
param_attr=ParamAttr(name='fc_weights'),
bias_attr=ParamAttr(name='fc_offset'))
return out
def conv_bn_layer(self,
input,
filter_size,
num_filters,
stride,
padding,
num_groups=1,
if_act=True,
act=None,
name=None,
use_cudnn=True,
res_last_bn_init=False):
lr_idx = self.curr_stage // self.lr_interval
lr_idx = min(lr_idx, len(self.lr_mult_list) - 1)
lr_mult = self.lr_mult_list[lr_idx]
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
self.out = Linear(
input_dim=self.cls_ch_expand,
output_dim=class_dim,
param_attr=ParamAttr("fc_weights"),
bias_attr=ParamAttr(name="fc_offset"))
def forward(self, inputs, label=None, dropout_prob=0.2):
x = self.conv1(inputs)
for block in self.block_list:
x = block(x)
x = self.last_second_conv(x)
x = self.pool(x)
x = self.last_conv(x)
x = fluid.layers.hard_swish(x)
x = fluid.layers.dropout(x=x, dropout_prob=dropout_prob)
x = fluid.layers.reshape(x, shape=[x.shape[0], x.shape[1]])
x = self.out(x)
return x
class ConvBNLayer(fluid.dygraph.Layer):
def __init__(self,
in_c,
out_c,
filter_size,
stride,
padding,
num_groups=1,
if_act=True,
act=None,
use_cudnn=True,
name=""):
super(ConvBNLayer, self).__init__()
self.if_act = if_act
self.act = act
self.conv = fluid.dygraph.Conv2D(
num_channels=in_c,
num_filters=out_c,
filter_size=filter_size,
stride=stride,
padding=padding,
groups=num_groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False,
use_cudnn=use_cudnn,
act=None)
self.bn = fluid.dygraph.BatchNorm(
num_channels=out_c,
act=None,
param_attr=ParamAttr(
name=name + '_weights', learning_rate=lr_mult),
bias_attr=False)
bn_name = name + '_bn'
bn = fluid.layers.batch_norm(
input=conv,
param_attr=ParamAttr(
name=bn_name + "_scale",
name=name + "_bn_scale",
regularizer=fluid.regularizer.L2DecayRegularizer(
regularization_coeff=0.0)),
bias_attr=ParamAttr(
name=bn_name + "_offset",
name=name + "_bn_offset",
regularizer=fluid.regularizer.L2DecayRegularizer(
regularization_coeff=0.0)),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
if if_act:
if act == 'relu':
bn = fluid.layers.relu(bn)
elif act == 'hard_swish':
bn = fluid.layers.hard_swish(bn)
return bn
def make_divisible(self, v, divisor=8, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v:
new_v += divisor
return new_v
def se_block(self, input, num_out_filter, ratio=4, name=None):
lr_idx = self.curr_stage // self.lr_interval
lr_idx = min(lr_idx, len(self.lr_mult_list) - 1)
lr_mult = self.lr_mult_list[lr_idx]
num_mid_filter = num_out_filter // ratio
pool = fluid.layers.pool2d(
input=input, pool_type='avg', global_pooling=True, use_cudnn=False)
conv1 = fluid.layers.conv2d(
input=pool,
filter_size=1,
num_filters=num_mid_filter,
act='relu',
param_attr=ParamAttr(
name=name + '_1_weights', learning_rate=lr_mult),
bias_attr=ParamAttr(
name=name + '_1_offset', learning_rate=lr_mult))
conv2 = fluid.layers.conv2d(
input=conv1,
filter_size=1,
num_filters=num_out_filter,
act='hard_sigmoid',
param_attr=ParamAttr(
name=name + '_2_weights', learning_rate=lr_mult),
bias_attr=ParamAttr(
name=name + '_2_offset', learning_rate=lr_mult))
scale = fluid.layers.elementwise_mul(x=input, y=conv2, axis=0)
return scale
def residual_unit(self,
input,
num_in_filter,
num_mid_filter,
num_out_filter,
stride,
filter_size,
act=None,
use_se=False,
name=None):
conv0 = self.conv_bn_layer(
input=input,
moving_mean_name=name + "_bn_mean",
moving_variance_name=name + "_bn_variance")
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
if self.if_act:
if self.act == "relu":
x = fluid.layers.relu(x)
elif self.act == "hard_swish":
x = fluid.layers.hard_swish(x)
else:
print("The activation function is selected incorrectly.")
exit()
return x
class ResidualUnit(fluid.dygraph.Layer):
def __init__(self,
in_c,
mid_c,
out_c,
filter_size,
stride,
use_se,
act=None,
name=''):
super(ResidualUnit, self).__init__()
self.if_shortcut = stride == 1 and in_c == out_c
self.if_se = use_se
self.expand_conv = ConvBNLayer(
in_c=in_c,
out_c=mid_c,
filter_size=1,
num_filters=num_mid_filter,
stride=1,
padding=0,
if_act=True,
act=act,
name=name + '_expand')
conv1 = self.conv_bn_layer(
input=conv0,
name=name + "_expand")
self.bottleneck_conv = ConvBNLayer(
in_c=mid_c,
out_c=mid_c,
filter_size=filter_size,
num_filters=num_mid_filter,
stride=stride,
padding=int((filter_size - 1) // 2),
num_groups=mid_c,
if_act=True,
act=act,
num_groups=num_mid_filter,
use_cudnn=False,
name=name + '_depthwise')
if use_se:
conv1 = self.se_block(
input=conv1, num_out_filter=num_mid_filter, name=name + '_se')
conv2 = self.conv_bn_layer(
input=conv1,
name=name + "_depthwise")
if self.if_se:
self.mid_se = SEModule(mid_c, name=name + "_se")
self.linear_conv = ConvBNLayer(
in_c=mid_c,
out_c=out_c,
filter_size=1,
num_filters=num_out_filter,
stride=1,
padding=0,
if_act=False,
name=name + '_linear',
res_last_bn_init=True)
if num_in_filter != num_out_filter or stride != 1:
return conv2
else:
return fluid.layers.elementwise_add(x=input, y=conv2, act=None)
act=None,
name=name + "_linear")
def forward(self, inputs):
x = self.expand_conv(inputs)
x = self.bottleneck_conv(x)
if self.if_se:
x = self.mid_se(x)
x = self.linear_conv(x)
if self.if_shortcut:
x = fluid.layers.elementwise_add(inputs, x)
return x
class SEModule(fluid.dygraph.Layer):
def __init__(self, channel, reduction=4, name=""):
super(SEModule, self).__init__()
self.avg_pool = fluid.dygraph.Pool2D(
pool_type="avg", global_pooling=True, use_cudnn=False)
self.conv1 = fluid.dygraph.Conv2D(
num_channels=channel,
num_filters=channel // reduction,
filter_size=1,
stride=1,
padding=0,
act="relu",
param_attr=ParamAttr(name=name + "_1_weights"),
bias_attr=ParamAttr(name=name + "_1_offset"))
self.conv2 = fluid.dygraph.Conv2D(
num_channels=channel // reduction,
num_filters=channel,
filter_size=1,
stride=1,
padding=0,
act=None,
param_attr=ParamAttr(name + "_2_weights"),
bias_attr=ParamAttr(name=name + "_2_offset"))
def forward(self, inputs):
outputs = self.avg_pool(inputs)
outputs = self.conv1(outputs)
outputs = self.conv2(outputs)
outputs = fluid.layers.hard_sigmoid(outputs)
return fluid.layers.elementwise_mul(x=inputs, y=outputs, axis=0)
def MobileNetV3_small_x0_35():
model = MobileNetV3(model_name='small', scale=0.35)
def MobileNetV3_small_x0_35(**args):
model = MobileNetV3(model_name="small", scale=0.35, **args)
return model
def MobileNetV3_small_x0_5():
model = MobileNetV3(model_name='small', scale=0.5)
def MobileNetV3_small_x0_5(**args):
model = MobileNetV3(model_name="small", scale=0.5, **args)
return model
def MobileNetV3_small_x0_75():
model = MobileNetV3(model_name='small', scale=0.75)
def MobileNetV3_small_x0_75(**args):
model = MobileNetV3(model_name="small", scale=0.75, **args)
return model
def MobileNetV3_small_x1_0(**args):
model = MobileNetV3(model_name='small', scale=1.0, **args)
model = MobileNetV3(model_name="small", scale=1.0, **args)
return model
def MobileNetV3_small_x1_25():
model = MobileNetV3(model_name='small', scale=1.25)
def MobileNetV3_small_x1_25(**args):
model = MobileNetV3(model_name="small", scale=1.25, **args)
return model
def MobileNetV3_large_x0_35():
model = MobileNetV3(model_name='large', scale=0.35)
def MobileNetV3_large_x0_35(**args):
model = MobileNetV3(model_name="large", scale=0.35, **args)
return model
def MobileNetV3_large_x0_5():
model = MobileNetV3(model_name='large', scale=0.5)
def MobileNetV3_large_x0_5(**args):
model = MobileNetV3(model_name="large", scale=0.5, **args)
return model
def MobileNetV3_large_x0_75():
model = MobileNetV3(model_name='large', scale=0.75)
def MobileNetV3_large_x0_75(**args):
model = MobileNetV3(model_name="large", scale=0.75, **args)
return model
def MobileNetV3_large_x1_0(**args):
model = MobileNetV3(model_name='large', scale=1.0, **args)
model = MobileNetV3(model_name="large", scale=1.0, **args)
return model
def MobileNetV3_large_x1_25():
model = MobileNetV3(model_name='large', scale=1.25)
def MobileNetV3_large_x1_25(**args):
model = MobileNetV3(model_name="large", scale=1.25, **args)
return model
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle
import paddle.fluid as fluid
import math
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
import math
__all__ = [
"Res2Net", "Res2Net50_48w_2s", "Res2Net50_26w_4s", "Res2Net50_14w_8s",
"Res2Net50_26w_6s", "Res2Net50_26w_8s", "Res2Net101_26w_4s",
"Res2Net152_26w_4s"
"Res2Net50_48w_2s", "Res2Net50_26w_4s", "Res2Net50_14w_8s",
"Res2Net50_48w_2s", "Res2Net50_26w_6s", "Res2Net50_26w_8s",
"Res2Net101_26w_4s", "Res2Net152_26w_4s", "Res2Net200_26w_4s"
]
class Res2Net():
def __init__(self, layers=50, scales=4, width=26):
class ConvBNLayer(fluid.dygraph.Layer):
def __init__(
self,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None, ):
super(ConvBNLayer, self).__init__()
self._conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
self._batch_norm = BatchNorm(
num_filters,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def forward(self, inputs):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class BottleneckBlock(fluid.dygraph.Layer):
def __init__(self,
num_channels1,
num_channels2,
num_filters,
stride,
scales,
shortcut=True,
if_first=False,
name=None):
super(BottleneckBlock, self).__init__()
self.stride = stride
self.scales = scales
self.conv0 = ConvBNLayer(
num_channels=num_channels1,
num_filters=num_filters,
filter_size=1,
act='relu',
name=name + "_branch2a")
self.conv1_list = []
for s in range(scales - 1):
conv1 = self.add_sublayer(
name + '_branch2b_' + str(s + 1),
ConvBNLayer(
num_channels=num_filters // scales,
num_filters=num_filters // scales,
filter_size=3,
stride=stride,
act='relu',
name=name + '_branch2b_' + str(s + 1)))
self.conv1_list.append(conv1)
self.pool2d_avg = Pool2D(
pool_size=3, pool_stride=stride, pool_padding=1, pool_type='avg')
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_channels2,
filter_size=1,
act=None,
name=name + "_branch2c")
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels1,
num_filters=num_channels2,
filter_size=1,
stride=stride,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs):
y = self.conv0(inputs)
xs = fluid.layers.split(y, self.scales, 1)
ys = []
for s, conv1 in enumerate(self.conv1_list):
if s == 0 or self.stride == 2:
ys.append(conv1(xs[s]))
else:
ys.append(conv1(xs[s] + ys[-1]))
if self.stride == 1:
ys.append(xs[-1])
else:
ys.append(self.pool2d_avg(xs[-1]))
conv1 = fluid.layers.concat(ys, axis=1)
conv2 = self.conv2(conv1)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=conv2)
layer_helper = LayerHelper(self.full_name(), act='relu')
return layer_helper.append_activation(y)
class Res2Net(fluid.dygraph.Layer):
def __init__(self, layers=50, scales=4, width=26, class_dim=1000):
super(Res2Net, self).__init__()
self.layers = layers
self.scales = scales
self.width = width
def net(self, input, class_dim=1000):
layers = self.layers
supported_layers = [50, 101, 152]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(supported_layers, layers)
basic_width = self.width * self.scales
num_filters1 = [basic_width * t for t in [1, 2, 4, 8]]
num_filters2 = [256 * t for t in [1, 2, 4, 8]]
supported_layers = [50, 101, 152, 200]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(
supported_layers, layers)
if layers == 50:
depth = [3, 4, 6, 3]
......@@ -49,22 +167,25 @@ class Res2Net():
depth = [3, 4, 23, 3]
elif layers == 152:
depth = [3, 8, 36, 3]
conv = self.conv_bn_layer(
input=input,
elif layers == 200:
depth = [3, 12, 48, 3]
num_channels = [64, 256, 512, 1024]
num_channels2 = [256, 512, 1024, 2048]
num_filters = [basic_width * t for t in [1, 2, 4, 8]]
self.conv1 = ConvBNLayer(
num_channels=3,
num_filters=64,
filter_size=7,
stride=2,
act='relu',
name="conv1")
self.pool2d_max = Pool2D(
pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
conv = fluid.layers.pool2d(
input=conv,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
self.block_list = []
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
if layers in [101, 152] and block == 2:
if i == 0:
......@@ -73,153 +194,87 @@ class Res2Net():
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
conv = self.bottleneck_block(
input=conv,
num_filters1=num_filters1[block],
num_filters2=num_filters2[block],
stride=2 if i == 0 and block != 0 else 1,
name=conv_name)
pool = fluid.layers.pool2d(
input=conv,
pool_size=7,
pool_stride=1,
pool_type='avg',
global_pooling=True)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
out = fluid.layers.fc(
input=pool,
size=class_dim,
param_attr=fluid.param_attr.ParamAttr(
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(
num_channels1=num_channels[block]
if i == 0 else num_channels2[block],
num_channels2=num_channels2[block],
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
scales=scales,
shortcut=shortcut,
if_first=block == i == 0,
name=conv_name))
self.block_list.append(bottleneck_block)
shortcut = True
self.pool2d_avg = Pool2D(
pool_size=7, pool_type='avg', global_pooling=True)
self.pool2d_avg_channels = num_channels[-1] * 2
stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
self.out = Linear(
self.pool2d_avg_channels,
class_dim,
param_attr=ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv),
name='fc_weights'),
bias_attr=fluid.param_attr.ParamAttr(name='fc_offset'))
return out
def conv_bn_layer(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
return fluid.layers.batch_norm(
input=conv,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def shortcut(self, input, ch_out, stride, name):
ch_in = input.shape[1]
if ch_in != ch_out or stride != 1:
return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
else:
return input
def bottleneck_block(self, input, num_filters1, num_filters2, stride,
name):
conv0 = self.conv_bn_layer(
input=input,
num_filters=num_filters1,
filter_size=1,
stride=1,
act='relu',
name=name + '_branch2a')
xs = fluid.layers.split(conv0, self.scales, 1)
ys = []
for s in range(self.scales - 1):
if s == 0 or stride == 2:
ys.append(
self.conv_bn_layer(
input=xs[s],
num_filters=num_filters1 // self.scales,
stride=stride,
filter_size=3,
act='relu',
name=name + '_branch2b_' + str(s + 1)))
else:
ys.append(
self.conv_bn_layer(
input=xs[s] + ys[-1],
num_filters=num_filters1 // self.scales,
stride=stride,
filter_size=3,
act='relu',
name=name + '_branch2b_' + str(s + 1)))
if stride == 1:
ys.append(xs[-1])
else:
ys.append(
fluid.layers.pool2d(
input=xs[-1],
pool_size=3,
pool_stride=stride,
pool_padding=1,
pool_type='avg'))
conv1 = fluid.layers.concat(ys, axis=1)
conv2 = self.conv_bn_layer(
input=conv1,
num_filters=num_filters2,
filter_size=1,
act=None,
name=name + "_branch2c")
name="fc_weights"),
bias_attr=ParamAttr(name="fc_offset"))
def forward(self, inputs):
y = self.conv1(inputs)
y = self.pool2d_max(y)
for block in self.block_list:
y = block(y)
y = self.pool2d_avg(y)
y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_channels])
y = self.out(y)
return y
def Res2Net50_48w_2s(**args):
model = Res2Net(layers=50, scales=2, width=48, **args)
return model
short = self.shortcut(
input, num_filters2, stride, name=name + "_branch1")
return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
def Res2Net50_26w_4s(**args):
model = Res2Net(layers=50, scales=4, width=26, **args)
return model
def Res2Net50_48w_2s():
model = Res2Net(layers=50, scales=2, width=48)
def Res2Net50_14w_8s(**args):
model = Res2Net(layers=50, scales=8, width=14, **args)
return model
def Res2Net50_26w_4s():
model = Res2Net(layers=50, scales=4, width=26)
def Res2Net50_48w_2s(**args):
model = Res2Net(layers=50, scales=2, width=48, **args)
return model
def Res2Net50_14w_8s():
model = Res2Net(layers=50, scales=8, width=14)
def Res2Net50_26w_6s(**args):
model = Res2Net(layers=50, scales=6, width=26, **args)
return model
def Res2Net50_26w_6s():
model = Res2Net(layers=50, scales=6, width=26)
def Res2Net50_26w_8s(**args):
model = Res2Net(layers=50, scales=8, width=26, **args)
return model
def Res2Net50_26w_8s():
model = Res2Net(layers=50, scales=8, width=26)
def Res2Net101_26w_4s(**args):
model = Res2Net(layers=101, scales=4, width=26, **args)
return model
def Res2Net101_26w_4s():
model = Res2Net(layers=101, scales=4, width=26)
def Res2Net152_26w_4s(**args):
model = Res2Net(layers=152, scales=4, width=26, **args)
return model
def Res2Net152_26w_4s():
model = Res2Net(layers=152, scales=4, width=26)
def Res2Net200_26w_4s(**args):
model = Res2Net(layers=200, scales=4, width=26, **args)
return model
......@@ -16,33 +16,158 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
import math
__all__ = [
"Res2Net_vd", "Res2Net50_vd_48w_2s", "Res2Net50_vd_26w_4s",
"Res2Net50_vd_14w_8s", "Res2Net50_vd_26w_6s", "Res2Net50_vd_26w_8s",
"Res2Net50_vd_48w_2s", "Res2Net50_vd_26w_4s", "Res2Net50_vd_14w_8s",
"Res2Net50_vd_48w_2s", "Res2Net50_vd_26w_6s", "Res2Net50_vd_26w_8s",
"Res2Net101_vd_26w_4s", "Res2Net152_vd_26w_4s", "Res2Net200_vd_26w_4s"
]
class Res2Net_vd():
def __init__(self, layers=50, scales=4, width=26):
class ConvBNLayer(fluid.dygraph.Layer):
def __init__(
self,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
is_vd_mode=False,
act=None,
name=None, ):
super(ConvBNLayer, self).__init__()
self.is_vd_mode = is_vd_mode
self._pool2d_avg = Pool2D(
pool_size=2, pool_stride=2, pool_padding=0, pool_type='avg', ceil_mode=True)
self._conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
self._batch_norm = BatchNorm(
num_filters,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def forward(self, inputs):
if self.is_vd_mode:
inputs = self._pool2d_avg(inputs)
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class BottleneckBlock(fluid.dygraph.Layer):
def __init__(self,
num_channels1,
num_channels2,
num_filters,
stride,
scales,
shortcut=True,
if_first=False,
name=None):
super(BottleneckBlock, self).__init__()
self.stride = stride
self.scales = scales
self.conv0 = ConvBNLayer(
num_channels=num_channels1,
num_filters=num_filters,
filter_size=1,
act='relu',
name=name + "_branch2a")
self.conv1_list = []
for s in range(scales - 1):
conv1 = self.add_sublayer(
name + '_branch2b_' + str(s + 1),
ConvBNLayer(
num_channels=num_filters // scales,
num_filters=num_filters // scales,
filter_size=3,
stride=stride,
act='relu',
name=name + '_branch2b_' + str(s + 1)))
self.conv1_list.append(conv1)
self.pool2d_avg = Pool2D(
pool_size=3, pool_stride=stride, pool_padding=1, pool_type='avg')
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_channels2,
filter_size=1,
act=None,
name=name + "_branch2c")
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels1,
num_filters=num_channels2,
filter_size=1,
stride=1,
is_vd_mode=False if if_first else True,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs):
y = self.conv0(inputs)
xs = fluid.layers.split(y, self.scales, 1)
ys = []
for s, conv1 in enumerate(self.conv1_list):
if s == 0 or self.stride == 2:
ys.append(conv1(xs[s]))
else:
ys.append(conv1(xs[s] + ys[-1]))
if self.stride == 1:
ys.append(xs[-1])
else:
ys.append(self.pool2d_avg(xs[-1]))
conv1 = fluid.layers.concat(ys, axis=1)
conv2 = self.conv2(conv1)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=conv2)
layer_helper = LayerHelper(self.full_name(), act='relu')
return layer_helper.append_activation(y)
class Res2Net_vd(fluid.dygraph.Layer):
def __init__(self, layers=50, scales=4, width=26, class_dim=1000):
super(Res2Net_vd, self).__init__()
self.layers = layers
self.scales = scales
self.width = width
def net(self, input, class_dim=1000):
layers = self.layers
basic_width = self.width * self.scales
supported_layers = [50, 101, 152, 200]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(
supported_layers, layers)
basic_width = self.width * self.scales
num_filters1 = [basic_width * t for t in [1, 2, 4, 8]]
num_filters2 = [256 * t for t in [1, 2, 4, 8]]
if layers == 50:
depth = [3, 4, 6, 3]
elif layers == 101:
......@@ -51,35 +176,37 @@ class Res2Net_vd():
depth = [3, 8, 36, 3]
elif layers == 200:
depth = [3, 12, 48, 3]
conv = self.conv_bn_layer(
input=input,
num_channels = [64, 256, 512, 1024]
num_channels2 = [256, 512, 1024, 2048]
num_filters = [basic_width * t for t in [1, 2, 4, 8]]
self.conv1_1 = ConvBNLayer(
num_channels=3,
num_filters=32,
filter_size=3,
stride=2,
act='relu',
name='conv1_1')
conv = self.conv_bn_layer(
input=conv,
name="conv1_1")
self.conv1_2 = ConvBNLayer(
num_channels=32,
num_filters=32,
filter_size=3,
stride=1,
act='relu',
name='conv1_2')
conv = self.conv_bn_layer(
input=conv,
name="conv1_2")
self.conv1_3 = ConvBNLayer(
num_channels=32,
num_filters=64,
filter_size=3,
stride=1,
act='relu',
name='conv1_3')
conv = fluid.layers.pool2d(
input=conv,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
name="conv1_3")
self.pool2d_max = Pool2D(
pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
self.block_list = []
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
if layers in [101, 152, 200] and block == 2:
if i == 0:
......@@ -88,207 +215,89 @@ class Res2Net_vd():
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
conv = self.bottleneck_block(
input=conv,
num_filters1=num_filters1[block],
num_filters2=num_filters2[block],
stride=2 if i == 0 and block != 0 else 1,
if_first=block == i == 0,
name=conv_name)
pool = fluid.layers.pool2d(
input=conv,
pool_size=7,
pool_stride=1,
pool_type='avg',
global_pooling=True)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
out = fluid.layers.fc(
input=pool,
size=class_dim,
param_attr=fluid.param_attr.ParamAttr(
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(
num_channels1=num_channels[block]
if i == 0 else num_channels2[block],
num_channels2=num_channels2[block],
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
scales=scales,
shortcut=shortcut,
if_first=block == i == 0,
name=conv_name))
self.block_list.append(bottleneck_block)
shortcut = True
self.pool2d_avg = Pool2D(
pool_size=7, pool_type='avg', global_pooling=True)
self.pool2d_avg_channels = num_channels[-1] * 2
stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
self.out = Linear(
self.pool2d_avg_channels,
class_dim,
param_attr=ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv),
name='fc_weights'),
bias_attr=fluid.param_attr.ParamAttr(name='fc_offset'))
return out
def conv_bn_layer(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
return fluid.layers.batch_norm(
input=conv,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def conv_bn_layer_new(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
pool = fluid.layers.pool2d(
input=input,
pool_size=2,
pool_stride=2,
pool_padding=0,
pool_type='avg',
ceil_mode=True)
conv = fluid.layers.conv2d(
input=pool,
num_filters=num_filters,
filter_size=filter_size,
stride=1,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
return fluid.layers.batch_norm(
input=conv,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def shortcut(self, input, ch_out, stride, name, if_first=False):
ch_in = input.shape[1]
if ch_in != ch_out or stride != 1:
if if_first:
return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
else:
return self.conv_bn_layer_new(
input, ch_out, 1, stride, name=name)
elif if_first:
return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
else:
return input
def bottleneck_block(self, input, num_filters1, num_filters2, stride, name,
if_first):
conv0 = self.conv_bn_layer(
input=input,
num_filters=num_filters1,
filter_size=1,
stride=1,
act='relu',
name=name + '_branch2a')
xs = fluid.layers.split(conv0, self.scales, 1)
ys = []
for s in range(self.scales - 1):
if s == 0 or stride == 2:
ys.append(
self.conv_bn_layer(
input=xs[s],
num_filters=num_filters1 // self.scales,
stride=stride,
filter_size=3,
act='relu',
name=name + '_branch2b_' + str(s + 1)))
else:
ys.append(
self.conv_bn_layer(
input=xs[s] + ys[-1],
num_filters=num_filters1 // self.scales,
stride=stride,
filter_size=3,
act='relu',
name=name + '_branch2b_' + str(s + 1)))
if stride == 1:
ys.append(xs[-1])
else:
ys.append(
fluid.layers.pool2d(
input=xs[-1],
pool_size=3,
pool_stride=stride,
pool_padding=1,
pool_type='avg'))
conv1 = fluid.layers.concat(ys, axis=1)
conv2 = self.conv_bn_layer(
input=conv1,
num_filters=num_filters2,
filter_size=1,
act=None,
name=name + "_branch2c")
short = self.shortcut(
input,
num_filters2,
stride,
if_first=if_first,
name=name + "_branch1")
return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
name="fc_weights"),
bias_attr=ParamAttr(name="fc_offset"))
def forward(self, inputs):
y = self.conv1_1(inputs)
y = self.conv1_2(y)
y = self.conv1_3(y)
y = self.pool2d_max(y)
for block in self.block_list:
y = block(y)
y = self.pool2d_avg(y)
y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_channels])
y = self.out(y)
return y
def Res2Net50_vd_48w_2s(**args):
model = Res2Net_vd(layers=50, scales=2, width=48, **args)
return model
def Res2Net50_vd_48w_2s():
model = Res2Net_vd(layers=50, scales=2, width=48)
def Res2Net50_vd_26w_4s(**args):
model = Res2Net_vd(layers=50, scales=4, width=26, **args)
return model
def Res2Net50_vd_26w_4s():
model = Res2Net_vd(layers=50, scales=4, width=26)
def Res2Net50_vd_14w_8s(**args):
model = Res2Net_vd(layers=50, scales=8, width=14, **args)
return model
def Res2Net50_vd_14w_8s():
model = Res2Net_vd(layers=50, scales=8, width=14)
def Res2Net50_vd_48w_2s(**args):
model = Res2Net_vd(layers=50, scales=2, width=48, **args)
return model
def Res2Net50_vd_26w_6s():
model = Res2Net_vd(layers=50, scales=6, width=26)
def Res2Net50_vd_26w_6s(**args):
model = Res2Net_vd(layers=50, scales=6, width=26, **args)
return model
def Res2Net50_vd_26w_8s():
model = Res2Net_vd(layers=50, scales=8, width=26)
def Res2Net50_vd_26w_8s(**args):
model = Res2Net_vd(layers=50, scales=8, width=26, **args)
return model
def Res2Net101_vd_26w_4s():
model = Res2Net_vd(layers=101, scales=4, width=26)
def Res2Net101_vd_26w_4s(**args):
model = Res2Net_vd(layers=101, scales=4, width=26, **args)
return model
def Res2Net152_vd_26w_4s():
model = Res2Net_vd(layers=152, scales=4, width=26)
def Res2Net152_vd_26w_4s(**args):
model = Res2Net_vd(layers=152, scales=4, width=26, **args)
return model
def Res2Net200_vd_26w_4s():
model = Res2Net_vd(layers=200, scales=4, width=26)
def Res2Net200_vd_26w_4s(**args):
model = Res2Net_vd(layers=200, scales=4, width=26, **args)
return model
......@@ -12,19 +12,20 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
import math
__all__ = [
"ResNet18",
"ResNet34",
"ResNet50",
"ResNet101",
"ResNet152",
]
__all__ = ["ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152"]
class ConvBNLayer(fluid.dygraph.Layer):
......@@ -34,7 +35,8 @@ class ConvBNLayer(fluid.dygraph.Layer):
filter_size,
stride=1,
groups=1,
act=None):
act=None,
name=None):
super(ConvBNLayer, self).__init__()
self._conv = Conv2D(
......@@ -45,37 +47,54 @@ class ConvBNLayer(fluid.dygraph.Layer):
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
self._batch_norm = BatchNorm(num_filters, act=act)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
self._batch_norm = BatchNorm(
num_filters,
act=act,
param_attr=ParamAttr(name=bn_name + "_scale"),
bias_attr=ParamAttr(bn_name + "_offset"),
moving_mean_name=bn_name + "_mean",
moving_variance_name=bn_name + "_variance")
def forward(self, inputs):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class BottleneckBlock(fluid.dygraph.Layer):
def __init__(self, num_channels, num_filters, stride, shortcut=True):
def __init__(self,
num_channels,
num_filters,
stride,
shortcut=True,
name=None):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act='relu')
act="relu",
name=name + "_branch2a")
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
stride=stride,
act='relu')
act="relu",
name=name + "_branch2b")
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters * 4,
filter_size=1,
act=None)
act=None,
name=name + "_branch2c")
self.shortcut = shortcut
......@@ -84,7 +103,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
num_channels=num_channels,
num_filters=num_filters * 4,
filter_size=1,
stride=stride)
stride=stride,
name=name + "_branch1")
self._num_channels_out = num_filters * 4
......@@ -100,7 +120,54 @@ class BottleneckBlock(fluid.dygraph.Layer):
y = fluid.layers.elementwise_add(x=short, y=conv2)
layer_helper = LayerHelper(self.full_name(), act='relu')
layer_helper = LayerHelper(self.full_name(), act="relu")
return layer_helper.append_activation(y)
class BasicBlock(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
stride,
shortcut=True,
name=None):
super(BasicBlock, self).__init__()
self.stride = stride
self.conv0 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=3,
stride=stride,
act="relu",
name=name + "_branch2a")
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
act=None,
name=name + "_branch2b")
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
stride=stride,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=conv1)
layer_helper = LayerHelper(self.full_name(), act="relu")
return layer_helper.append_activation(y)
......@@ -108,9 +175,15 @@ class ResNet(fluid.dygraph.Layer):
def __init__(self, layers=50, class_dim=1000):
super(ResNet, self).__init__()
self.layers = layers
supported_layers = [18, 34, 50, 101, 152]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(
supported_layers, layers)
if layers == 18:
depth = [2, 2, 2, 2]
elif layers == 18 or layers == 50:
elif layers == 34 or layers == 50:
depth = [3, 4, 6, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
......@@ -118,77 +191,105 @@ class ResNet(fluid.dygraph.Layer):
depth = [3, 8, 36, 3]
else:
raise ValueError('Input layer is not supported')
num_channels = [64, 256, 512, 1024]
num_filters = [64, 128, 256, 512]
num_channels = [64, 256, 512,
1024] if layers >= 50 else [64, 64, 128, 256]
self.conv = ConvBNLayer(
num_channels=3,
num_filters=64,
filter_size=7,
stride=2,
act='relu')
act="relu",
name="conv1")
self.pool2d_max = Pool2D(
pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
self.bottleneck_block_list = []
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(
num_channels=num_channels[block]
if i == 0 else num_filters[block] * 4,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
shortcut=shortcut))
self.bottleneck_block_list.append(bottleneck_block)
shortcut = True
pool_size=3, pool_stride=2, pool_padding=1, pool_type="max")
self.block_list = []
if layers >= 50:
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
if layers in [101, 152] and block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
bottleneck_block = self.add_sublayer(
conv_name,
BottleneckBlock(
num_channels=num_channels[block]
if i == 0 else num_filters[block] * 4,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
shortcut=shortcut,
name=conv_name))
self.block_list.append(bottleneck_block)
shortcut = True
else:
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
conv_name = "res" + str(block + 2) + chr(97 + i)
basic_block = self.add_sublayer(
conv_name,
BasicBlock(
num_channels=num_channels[block]
if i == 0 else num_filters[block],
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
shortcut=shortcut,
name=conv_name))
self.block_list.append(basic_block)
shortcut = True
self.pool2d_avg = Pool2D(
pool_size=7, pool_type='avg', global_pooling=True)
self.pool2d_avg_output = num_filters[len(num_filters) - 1] * 4 * 1 * 1
self.pool2d_avg_channels = num_channels[-1] * 2
stdv = 1.0 / math.sqrt(2048 * 1.0)
stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
self.out = Linear(
self.pool2d_avg_output,
self.pool2d_avg_channels,
class_dim,
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv)))
param_attr=ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv),
name="fc_0.w_0"),
bias_attr=ParamAttr(name="fc_0.b_0"))
def forward(self, inputs):
y = self.conv(inputs)
y = self.pool2d_max(y)
for bottleneck_block in self.bottleneck_block_list:
y = bottleneck_block(y)
for block in self.block_list:
y = block(y)
y = self.pool2d_avg(y)
y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_output])
y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_channels])
y = self.out(y)
return y
def ResNet18(**kwargs):
model = ResNet(layers=18, **kwargs)
def ResNet18(**args):
model = ResNet(layers=18, **args)
return model
def ResNet34(**kwargs):
model = ResNet(layers=34, **kwargs)
def ResNet34(**args):
model = ResNet(layers=34, **args)
return model
def ResNet50(**kwargs):
model = ResNet(layers=50, **kwargs)
def ResNet50(**args):
model = ResNet(layers=50, **args)
return model
def ResNet101(**kwargs):
model = ResNet(layers=101, **kwargs)
def ResNet101(**args):
model = ResNet(layers=101, **args)
return model
def ResNet152(**kwargs):
model = ResNet(layers=152, **kwargs)
def ResNet152(**args):
model = ResNet(layers=152, **args)
return model
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
__all__ = ["ResNet", "ResNet50_vc", "ResNet101_vc", "ResNet152_vc"]
train_parameters = {
"input_size": [3, 224, 224],
"input_mean": [0.485, 0.456, 0.406],
"input_std": [0.229, 0.224, 0.225],
"learning_strategy": {
"name": "piecewise_decay",
"batch_size": 256,
"epochs": [30, 60, 90],
"steps": [0.1, 0.01, 0.001, 0.0001]
}
}
import math
class ResNet():
def __init__(self, layers=50):
self.params = train_parameters
self.layers = layers
__all__ = [
"ResNet18_vc", "ResNet34_vc", "ResNet50_vc", "ResNet101_vc", "ResNet152_vc"
]
def net(self, input, class_dim=1000):
layers = self.layers
supported_layers = [50, 101, 152]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(supported_layers, layers)
if layers == 50:
depth = [3, 4, 6, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
elif layers == 152:
depth = [3, 8, 36, 3]
num_filters = [64, 128, 256, 512]
class ConvBNLayer(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
super(ConvBNLayer, self).__init__()
conv = self.conv_bn_layer(
input=input,
num_filters=32,
filter_size=3,
stride=2,
act='relu',
name='conv1_1')
conv = self.conv_bn_layer(
input=conv,
num_filters=32,
filter_size=3,
stride=1,
act='relu',
name='conv1_2')
conv = self.conv_bn_layer(
input=conv,
num_filters=64,
filter_size=3,
stride=1,
act='relu',
name='conv1_3')
conv = fluid.layers.pool2d(
input=conv,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
for block in range(len(depth)):
for i in range(depth[block]):
if layers in [101, 152] and block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
conv = self.bottleneck_block(
input=conv,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
name=conv_name)
pool = fluid.layers.pool2d(
input=conv, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
out = fluid.layers.fc(input=pool,
size=class_dim,
param_attr=fluid.param_attr.ParamAttr(
name="fc_0.w_0",
initializer=fluid.initializer.Uniform(-stdv,
stdv)),
bias_attr=ParamAttr(name="fc_0.b_0"))
return out
def conv_bn_layer(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
conv = fluid.layers.conv2d(
input=input,
self._conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
......@@ -129,66 +50,264 @@ class ResNet():
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False,
name=name + '.conv2d.output.1')
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
return fluid.layers.batch_norm(
input=conv,
self._batch_norm = BatchNorm(
num_filters,
act=act,
name=bn_name + '.output.1',
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance', )
moving_variance_name=bn_name + '_variance')
def shortcut(self, input, ch_out, stride, name):
ch_in = input.shape[1]
if ch_in != ch_out or stride != 1:
return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
else:
return input
def forward(self, inputs):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class BottleneckBlock(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
stride,
shortcut=True,
name=None):
super(BottleneckBlock, self).__init__()
def bottleneck_block(self, input, num_filters, stride, name):
conv0 = self.conv_bn_layer(
input=input,
self.conv0 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act='relu',
name=name + "_branch2a")
conv1 = self.conv_bn_layer(
input=conv0,
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
stride=stride,
act='relu',
name=name + "_branch2b")
conv2 = self.conv_bn_layer(
input=conv1,
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters * 4,
filter_size=1,
act=None,
name=name + "_branch2c")
short = self.shortcut(
input, num_filters * 4, stride, name=name + "_branch1")
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 4,
filter_size=1,
stride=stride,
name=name + "_branch1")
self.shortcut = shortcut
self._num_channels_out = num_filters * 4
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=conv2)
layer_helper = LayerHelper(self.full_name(), act='relu')
return layer_helper.append_activation(y)
class BasicBlock(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
stride,
shortcut=True,
name=None):
super(BasicBlock, self).__init__()
self.stride = stride
self.conv0 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=3,
stride=stride,
act='relu',
name=name + "_branch2a")
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
act=None,
name=name + "_branch2b")
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
stride=stride,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=conv1)
layer_helper = LayerHelper(self.full_name(), act='relu')
return layer_helper.append_activation(y)
class ResNet_vc(fluid.dygraph.Layer):
def __init__(self, layers=50, class_dim=1000):
super(ResNet_vc, self).__init__()
self.layers = layers
supported_layers = [18, 34, 50, 101, 152]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(
supported_layers, layers)
if layers == 18:
depth = [2, 2, 2, 2]
elif layers == 34 or layers == 50:
depth = [3, 4, 6, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
elif layers == 152:
depth = [3, 8, 36, 3]
num_channels = [64, 256, 512,
1024] if layers >= 50 else [64, 64, 128, 256]
num_filters = [64, 128, 256, 512]
return fluid.layers.elementwise_add(
x=short, y=conv2, act='relu', name=name + ".add.output.5")
self.conv1_1 = ConvBNLayer(
num_channels=3,
num_filters=32,
filter_size=3,
stride=2,
act='relu',
name="conv1_1")
self.conv1_2 = ConvBNLayer(
num_channels=32,
num_filters=32,
filter_size=3,
stride=1,
act='relu',
name="conv1_2")
self.conv1_3 = ConvBNLayer(
num_channels=32,
num_filters=64,
filter_size=3,
stride=1,
act='relu',
name="conv1_3")
self.pool2d_max = Pool2D(
pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
self.block_list = []
if layers >= 50:
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
if layers in [101, 152] and block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(
num_channels=num_channels[block]
if i == 0 else num_filters[block] * 4,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
shortcut=shortcut,
name=conv_name))
self.block_list.append(bottleneck_block)
shortcut = True
else:
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
conv_name = "res" + str(block + 2) + chr(97 + i)
basic_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BasicBlock(
num_channels=num_channels[block]
if i == 0 else num_filters[block],
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
shortcut=shortcut,
name=conv_name))
self.block_list.append(basic_block)
shortcut = True
self.pool2d_avg = Pool2D(
pool_size=7, pool_type='avg', global_pooling=True)
self.pool2d_avg_channels = num_channels[-1] * 2
stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
self.out = Linear(
self.pool2d_avg_channels,
class_dim,
param_attr=ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv),
name="fc_0.w_0"),
bias_attr=ParamAttr(name="fc_0.b_0"))
def forward(self, inputs):
y = self.conv1_1(inputs)
y = self.conv1_2(y)
y = self.conv1_3(y)
y = self.pool2d_max(y)
for block in self.block_list:
y = block(y)
y = self.pool2d_avg(y)
y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_channels])
y = self.out(y)
return y
def ResNet18_vc(**args):
model = ResNet_vc(layers=18, **args)
return model
def ResNet34_vc(**args):
model = ResNet_vc(layers=34, **args)
return model
def ResNet50_vc():
model = ResNet(layers=50)
def ResNet50_vc(**args):
model = ResNet_vc(layers=50, **args)
return model
def ResNet101_vc():
model = ResNet(layers=101)
def ResNet101_vc(**args):
model = ResNet_vc(layers=101, **args)
return model
def ResNet152_vc():
model = ResNet(layers=152)
def ResNet152_vc(**args):
model = ResNet_vc(layers=152, **args)
return model
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
import math
__all__ = [
"ResNet", "ResNet18_vd", "ResNet34_vd", "ResNet50_vd", "ResNet101_vd",
"ResNet152_vd", "ResNet200_vd"
"ResNet18_vd", "ResNet34_vd", "ResNet50_vd", "ResNet101_vd", "ResNet152_vd"
]
class ResNet():
def __init__(self,
layers=50,
is_3x3=False,
postfix_name="",
lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0]):
self.layers = layers
self.is_3x3 = is_3x3
self.postfix_name = "" if postfix_name is None else postfix_name
self.lr_mult_list = lr_mult_list
assert len(
self.lr_mult_list
) == 5, "lr_mult_list length in ResNet must be 5 but got {}!!".format(
len(self.lr_mult_list))
self.curr_stage = 0
def net(self, input, class_dim=1000):
is_3x3 = self.is_3x3
layers = self.layers
supported_layers = [18, 34, 50, 101, 152, 200]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(supported_layers, layers)
if layers == 18:
depth = [2, 2, 2, 2]
elif layers == 34 or layers == 50:
depth = [3, 4, 6, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
elif layers == 152:
depth = [3, 8, 36, 3]
elif layers == 200:
depth = [3, 12, 48, 3]
num_filters = [64, 128, 256, 512]
if is_3x3 == False:
conv = self.conv_bn_layer(
input=input,
num_filters=64,
filter_size=7,
stride=2,
act='relu')
else:
conv = self.conv_bn_layer(
input=input,
num_filters=32,
filter_size=3,
stride=2,
act='relu',
name='conv1_1')
conv = self.conv_bn_layer(
input=conv,
num_filters=32,
filter_size=3,
stride=1,
act='relu',
name='conv1_2')
conv = self.conv_bn_layer(
input=conv,
num_filters=64,
filter_size=3,
stride=1,
act='relu',
name='conv1_3')
conv = fluid.layers.pool2d(
input=conv,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
if layers >= 50:
for block in range(len(depth)):
self.curr_stage += 1
for i in range(depth[block]):
if layers in [101, 152, 200] and block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
conv = self.bottleneck_block(
input=conv,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
if_first=block == i == 0,
name=conv_name)
else:
for block in range(len(depth)):
self.curr_stage += 1
for i in range(depth[block]):
conv_name = "res" + str(block + 2) + chr(97 + i)
conv = self.basic_block(
input=conv,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
if_first=block == i == 0,
name=conv_name)
pool = fluid.layers.pool2d(
input=conv, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
out = fluid.layers.fc(
input=pool,
size=class_dim,
param_attr=fluid.param_attr.ParamAttr(
name="fc_0.w_0" + self.postfix_name,
initializer=fluid.initializer.Uniform(-stdv, stdv)),
bias_attr=ParamAttr(name="fc_0.b_0" + self.postfix_name))
return out
def conv_bn_layer(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
lr_mult = self.lr_mult_list[self.curr_stage]
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
class ConvBNLayer(fluid.dygraph.Layer):
def __init__(
self,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
is_vd_mode=False,
act=None,
param_attr=ParamAttr(name=name + "_weights" + self.postfix_name),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
return fluid.layers.batch_norm(
input=conv,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale' + self.postfix_name),
bias_attr=ParamAttr(bn_name + '_offset' + self.postfix_name),
moving_mean_name=bn_name + '_mean' + self.postfix_name,
moving_variance_name=bn_name + '_variance' + self.postfix_name)
def conv_bn_layer_new(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
lr_mult = self.lr_mult_list[self.curr_stage]
pool = fluid.layers.pool2d(
input=input,
name=None, ):
super(ConvBNLayer, self).__init__()
self.is_vd_mode = is_vd_mode
self._pool2d_avg = Pool2D(
pool_size=2,
pool_stride=2,
pool_padding=0,
pool_type='avg',
ceil_mode=True)
conv = fluid.layers.conv2d(
input=pool,
self._conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=1,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(
name=name + "_weights" + self.postfix_name,
learning_rate=lr_mult),
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
return fluid.layers.batch_norm(
input=conv,
self._batch_norm = BatchNorm(
num_filters,
act=act,
param_attr=ParamAttr(
name=bn_name + '_scale' + self.postfix_name,
learning_rate=lr_mult),
bias_attr=ParamAttr(
bn_name + '_offset' + self.postfix_name,
learning_rate=lr_mult),
moving_mean_name=bn_name + '_mean' + self.postfix_name,
moving_variance_name=bn_name + '_variance' + self.postfix_name)
def shortcut(self, input, ch_out, stride, name, if_first=False):
ch_in = input.shape[1]
if ch_in != ch_out or stride != 1:
if if_first:
return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
else:
return self.conv_bn_layer_new(
input, ch_out, 1, stride, name=name)
elif if_first:
return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
else:
return input
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def bottleneck_block(self, input, num_filters, stride, name, if_first):
conv0 = self.conv_bn_layer(
input=input,
def forward(self, inputs):
if self.is_vd_mode:
inputs = self._pool2d_avg(inputs)
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class BottleneckBlock(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
stride,
shortcut=True,
if_first=False,
name=None):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act='relu',
name=name + "_branch2a")
conv1 = self.conv_bn_layer(
input=conv0,
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
stride=stride,
act='relu',
name=name + "_branch2b")
conv2 = self.conv_bn_layer(
input=conv1,
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters * 4,
filter_size=1,
act=None,
name=name + "_branch2c")
short = self.shortcut(
input,
num_filters * 4,
stride,
if_first=if_first,
name=name + "_branch1")
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 4,
filter_size=1,
stride=1,
is_vd_mode=False if if_first else True,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=conv2)
return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
layer_helper = LayerHelper(self.full_name(), act='relu')
return layer_helper.append_activation(y)
def basic_block(self, input, num_filters, stride, name, if_first):
conv0 = self.conv_bn_layer(
input=input,
class BasicBlock(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
stride,
shortcut=True,
if_first=False,
name=None):
super(BasicBlock, self).__init__()
self.stride = stride
self.conv0 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=3,
act='relu',
stride=stride,
act='relu',
name=name + "_branch2a")
conv1 = self.conv_bn_layer(
input=conv0,
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
act=None,
name=name + "_branch2b")
short = self.shortcut(
input,
num_filters,
stride,
if_first=if_first,
name=name + "_branch1")
return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
stride=1,
is_vd_mode=False if if_first else True,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=conv1)
layer_helper = LayerHelper(self.full_name(), act='relu')
return layer_helper.append_activation(y)
class ResNet_vd(fluid.dygraph.Layer):
def __init__(self, layers=50, class_dim=1000):
super(ResNet_vd, self).__init__()
self.layers = layers
supported_layers = [18, 34, 50, 101, 152, 200]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(
supported_layers, layers)
if layers == 18:
depth = [2, 2, 2, 2]
elif layers == 34 or layers == 50:
depth = [3, 4, 6, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
elif layers == 152:
depth = [3, 8, 36, 3]
elif layers == 200:
depth = [3, 12, 48, 3]
num_channels = [64, 256, 512,
1024] if layers >= 50 else [64, 64, 128, 256]
num_filters = [64, 128, 256, 512]
self.conv1_1 = ConvBNLayer(
num_channels=3,
num_filters=32,
filter_size=3,
stride=2,
act='relu',
name="conv1_1")
self.conv1_2 = ConvBNLayer(
num_channels=32,
num_filters=32,
filter_size=3,
stride=1,
act='relu',
name="conv1_2")
self.conv1_3 = ConvBNLayer(
num_channels=32,
num_filters=64,
filter_size=3,
stride=1,
act='relu',
name="conv1_3")
self.pool2d_max = Pool2D(
pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
def ResNet18_vd():
model = ResNet(layers=18, is_3x3=True)
self.block_list = []
if layers >= 50:
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
if layers in [101, 152] and block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(
num_channels=num_channels[block]
if i == 0 else num_filters[block] * 4,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
shortcut=shortcut,
if_first=block == i == 0,
name=conv_name))
self.block_list.append(bottleneck_block)
shortcut = True
else:
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
conv_name = "res" + str(block + 2) + chr(97 + i)
basic_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BasicBlock(
num_channels=num_channels[block]
if i == 0 else num_filters[block],
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
shortcut=shortcut,
if_first=block == i == 0,
name=conv_name))
self.block_list.append(basic_block)
shortcut = True
self.pool2d_avg = Pool2D(
pool_size=7, pool_type='avg', global_pooling=True)
self.pool2d_avg_channels = num_channels[-1] * 2
stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
self.out = Linear(
self.pool2d_avg_channels,
class_dim,
param_attr=ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv),
name="fc_0.w_0"),
bias_attr=ParamAttr(name="fc_0.b_0"))
def forward(self, inputs):
y = self.conv1_1(inputs)
y = self.conv1_2(y)
y = self.conv1_3(y)
y = self.pool2d_max(y)
for block in self.block_list:
y = block(y)
y = self.pool2d_avg(y)
y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_channels])
y = self.out(y)
return y
def ResNet18_vd(**args):
model = ResNet_vd(layers=18, **args)
return model
def ResNet34_vd():
model = ResNet(layers=34, is_3x3=True)
def ResNet34_vd(**args):
model = ResNet_vd(layers=34, **args)
return model
def ResNet50_vd(**args):
model = ResNet(layers=50, is_3x3=True, **args)
model = ResNet_vd(layers=50, **args)
return model
def ResNet101_vd():
model = ResNet(layers=101, is_3x3=True)
def ResNet101_vd(**args):
model = ResNet_vd(layers=101, **args)
return model
def ResNet152_vd():
model = ResNet(layers=152, is_3x3=True)
def ResNet152_vd(**args):
model = ResNet_vd(layers=152, **args)
return model
def ResNet200_vd():
model = ResNet(layers=200, is_3x3=True)
def ResNet200_vd(**args):
model = ResNet_vd(layers=200, **args)
return model
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
import math
__all__ = [
"ResNeXt", "ResNeXt50_64x4d", "ResNeXt101_64x4d", "ResNeXt152_64x4d",
"ResNeXt50_32x4d", "ResNeXt101_32x4d", "ResNeXt152_32x4d"
"ResNeXt50_32x4d", "ResNeXt50_64x4d", "ResNeXt101_32x4d",
"ResNeXt101_64x4d", "ResNeXt152_32x4d", "ResNeXt152_64x4d"
]
class ResNeXt():
def __init__(self, layers=50, cardinality=64):
self.layers = layers
self.cardinality = cardinality
def net(self, input, class_dim=1000):
layers = self.layers
cardinality = self.cardinality
supported_layers = [50, 101, 152]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(supported_layers, layers)
if layers == 50:
depth = [3, 4, 6, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
elif layers == 152:
depth = [3, 8, 36, 3]
num_filters1 = [256, 512, 1024, 2048]
num_filters2 = [128, 256, 512, 1024]
class ConvBNLayer(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
super(ConvBNLayer, self).__init__()
conv = self.conv_bn_layer(
input=input,
num_filters=64,
filter_size=7,
stride=2,
act='relu',
name="res_conv1") #debug
conv = fluid.layers.pool2d(
input=conv,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
for block in range(len(depth)):
for i in range(depth[block]):
if layers in [101, 152] and block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
conv = self.bottleneck_block(
input=conv,
num_filters=num_filters1[block]
if cardinality == 64 else num_filters2[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=cardinality,
name=conv_name)
pool = fluid.layers.pool2d(
input=conv, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
out = fluid.layers.fc(
input=pool,
size=class_dim,
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv),
name='fc_weights'),
bias_attr=fluid.param_attr.ParamAttr(name='fc_offset'))
return out
def conv_bn_layer(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
conv = fluid.layers.conv2d(
input=input,
self._conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
......@@ -110,86 +51,192 @@ class ResNeXt():
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False,
name=name + '.conv2d.output.1')
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
return fluid.layers.batch_norm(
input=conv,
self._batch_norm = BatchNorm(
num_filters,
act=act,
name=bn_name + '.output.1',
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance', )
def shortcut(self, input, ch_out, stride, name):
ch_in = input.shape[1]
if ch_in != ch_out or stride != 1:
return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
else:
return input
def bottleneck_block(self, input, num_filters, stride, cardinality, name):
cardinality = self.cardinality
conv0 = self.conv_bn_layer(
input=input,
moving_variance_name=bn_name + '_variance')
def forward(self, inputs):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class BottleneckBlock(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
stride,
cardinality,
shortcut=True,
name=None):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act='relu',
name=name + "_branch2a")
conv1 = self.conv_bn_layer(
input=conv0,
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
stride=stride,
groups=cardinality,
stride=stride,
act='relu',
name=name + "_branch2b")
conv2 = self.conv_bn_layer(
input=conv1,
num_filters=num_filters if cardinality == 64 else num_filters * 2,
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
act=None,
name=name + "_branch2c")
short = self.shortcut(
input,
num_filters if cardinality == 64 else num_filters * 2,
stride,
name=name + "_branch1")
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 2
if cardinality == 32 else num_filters,
filter_size=1,
stride=stride,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=conv2)
layer_helper = LayerHelper(self.full_name(), act='relu')
return layer_helper.append_activation(y)
return fluid.layers.elementwise_add(
x=short, y=conv2, act='relu', name=name + ".add.output.5")
class ResNeXt(fluid.dygraph.Layer):
def __init__(self, layers=50, class_dim=1000, cardinality=32):
super(ResNeXt, self).__init__()
self.layers = layers
self.cardinality = cardinality
supported_layers = [50, 101, 152]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(
supported_layers, layers)
supported_cardinality = [32, 64]
assert cardinality in supported_cardinality, \
"supported cardinality is {} but input cardinality is {}" \
.format(supported_cardinality, cardinality)
if layers == 50:
depth = [3, 4, 6, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
elif layers == 152:
depth = [3, 8, 36, 3]
num_channels = [64, 256, 512, 1024]
num_filters = [128, 256, 512,
1024] if cardinality == 32 else [256, 512, 1024, 2048]
self.conv = ConvBNLayer(
num_channels=3,
num_filters=64,
filter_size=7,
stride=2,
act='relu',
name="res_conv1")
self.pool2d_max = Pool2D(
pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
def ResNeXt50_64x4d():
model = ResNeXt(layers=50, cardinality=64)
self.block_list = []
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
if layers in [101, 152] and block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(
num_channels=num_channels[block] if i == 0 else
num_filters[block] * int(64 // self.cardinality),
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=self.cardinality,
shortcut=shortcut,
name=conv_name))
self.block_list.append(bottleneck_block)
shortcut = True
self.pool2d_avg = Pool2D(
pool_size=7, pool_type='avg', global_pooling=True)
self.pool2d_avg_channels = num_channels[-1] * 2
stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
self.out = Linear(
self.pool2d_avg_channels,
class_dim,
param_attr=ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv),
name="fc_weights"),
bias_attr=ParamAttr(name="fc_offset"))
def forward(self, inputs):
y = self.conv(inputs)
y = self.pool2d_max(y)
for block in self.block_list:
y = block(y)
y = self.pool2d_avg(y)
y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_channels])
y = self.out(y)
return y
def ResNeXt50_32x4d(**args):
model = ResNeXt(layers=50, cardinality=32, **args)
return model
def ResNeXt50_32x4d():
model = ResNeXt(layers=50, cardinality=32)
def ResNeXt50_64x4d(**args):
model = ResNeXt(layers=50, cardinality=64, **args)
return model
def ResNeXt101_64x4d():
model = ResNeXt(layers=101, cardinality=64)
def ResNeXt101_32x4d(**args):
model = ResNeXt(layers=101, cardinality=32, **args)
return model
def ResNeXt101_32x4d():
model = ResNeXt(layers=101, cardinality=32)
def ResNeXt101_64x4d(**args):
model = ResNeXt(layers=101, cardinality=64, **args)
return model
def ResNeXt152_64x4d():
model = ResNeXt(layers=152, cardinality=64)
def ResNeXt152_32x4d(**args):
model = ResNeXt(layers=152, cardinality=32, **args)
return model
def ResNeXt152_32x4d():
model = ResNeXt(layers=152, cardinality=32)
def ResNeXt152_64x4d(**args):
model = ResNeXt(layers=152, cardinality=64, **args)
return model
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
import math
__all__ = [
"ResNeXt", "ResNeXt50_vd_64x4d", "ResNeXt101_vd_64x4d",
"ResNeXt152_vd_64x4d", "ResNeXt50_vd_32x4d", "ResNeXt101_vd_32x4d",
"ResNeXt152_vd_32x4d"
"ResNeXt50_vd_32x4d", "ResNeXt50_vd_64x4d", "ResNeXt101_vd_32x4d",
"ResNeXt101_vd_64x4d", "ResNeXt152_vd_32x4d", "ResNeXt152_vd_64x4d"
]
class ResNeXt():
def __init__(self, layers=50, is_3x3=False, cardinality=64):
self.layers = layers
self.is_3x3 = is_3x3
self.cardinality = cardinality
def net(self, input, class_dim=1000):
is_3x3 = self.is_3x3
layers = self.layers
cardinality = self.cardinality
supported_layers = [50, 101, 152]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(supported_layers, layers)
if layers == 50:
depth = [3, 4, 6, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
elif layers == 152:
depth = [3, 8, 36, 3]
num_filters1 = [256, 512, 1024, 2048]
num_filters2 = [128, 256, 512, 1024]
if is_3x3 == False:
conv = self.conv_bn_layer(
input=input,
num_filters=64,
filter_size=7,
stride=2,
act='relu')
else:
conv = self.conv_bn_layer(
input=input,
num_filters=32,
filter_size=3,
stride=2,
act='relu',
name='conv1_1')
conv = self.conv_bn_layer(
input=conv,
num_filters=32,
filter_size=3,
stride=1,
act='relu',
name='conv1_2')
conv = self.conv_bn_layer(
input=conv,
num_filters=64,
filter_size=3,
stride=1,
act='relu',
name='conv1_3')
conv = fluid.layers.pool2d(
input=conv,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
class ConvBNLayer(fluid.dygraph.Layer):
def __init__(
self,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
is_vd_mode=False,
act=None,
name=None, ):
super(ConvBNLayer, self).__init__()
for block in range(len(depth)):
for i in range(depth[block]):
if layers in [101, 152, 200] and block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
conv = self.bottleneck_block(
input=conv,
num_filters=num_filters1[block]
if cardinality == 64 else num_filters2[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=cardinality,
if_first=block == 0,
name=conv_name)
pool = fluid.layers.pool2d(
input=conv, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
out = fluid.layers.fc(
input=pool,
size=class_dim,
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv),
name='fc_weights'),
bias_attr=fluid.param_attr.ParamAttr(name='fc_offset'))
return out
def conv_bn_layer(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
conv = fluid.layers.conv2d(
input=input,
self.is_vd_mode = is_vd_mode
self._pool2d_avg = Pool2D(
pool_size=2, pool_stride=2, pool_padding=0, pool_type='avg', ceil_mode=True)
self._conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
......@@ -137,121 +61,209 @@ class ResNeXt():
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
return fluid.layers.batch_norm(
input=conv,
self._batch_norm = BatchNorm(
num_filters,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def conv_bn_layer_new(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
pool = fluid.layers.pool2d(
input=input,
pool_size=2,
pool_stride=2,
pool_padding=0,
pool_type='avg',
ceil_mode=True)
conv = fluid.layers.conv2d(
input=pool,
num_filters=num_filters,
filter_size=filter_size,
stride=1,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
return fluid.layers.batch_norm(
input=conv,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def forward(self, inputs):
if self.is_vd_mode:
inputs = self._pool2d_avg(inputs)
y = self._conv(inputs)
y = self._batch_norm(y)
return y
def shortcut(self, input, ch_out, stride, name, if_first=False):
ch_in = input.shape[1]
if ch_in != ch_out or stride != 1:
if if_first:
return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
else:
return self.conv_bn_layer_new(
input, ch_out, 1, stride, name=name)
else:
return input
def bottleneck_block(self, input, num_filters, stride, cardinality, name,
if_first):
conv0 = self.conv_bn_layer(
input=input,
class BottleneckBlock(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
stride,
cardinality,
shortcut=True,
if_first=False,
name=None):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act='relu',
name=name + "_branch2a")
conv1 = self.conv_bn_layer(
input=conv0,
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
groups=cardinality,
stride=stride,
act='relu',
groups=cardinality,
name=name + "_branch2b")
conv2 = self.conv_bn_layer(
input=conv1,
num_filters=num_filters if cardinality == 64 else num_filters * 2,
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
act=None,
name=name + "_branch2c")
short = self.shortcut(
input,
num_filters if cardinality == 64 else num_filters * 2,
stride,
if_first=if_first,
name=name + "_branch1")
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 2
if cardinality == 32 else num_filters,
filter_size=1,
stride=1,
is_vd_mode=False if if_first else True,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=conv2)
layer_helper = LayerHelper(self.full_name(), act='relu')
return layer_helper.append_activation(y)
class ResNeXt(fluid.dygraph.Layer):
def __init__(self, layers=50, class_dim=1000, cardinality=32):
super(ResNeXt, self).__init__()
self.layers = layers
self.cardinality = cardinality
supported_layers = [50, 101, 152]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(
supported_layers, layers)
supported_cardinality = [32, 64]
assert cardinality in supported_cardinality, \
"supported cardinality is {} but input cardinality is {}" \
.format(supported_cardinality, cardinality)
if layers == 50:
depth = [3, 4, 6, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
elif layers == 152:
depth = [3, 8, 36, 3]
num_channels = [64, 256, 512, 1024]
num_filters = [128, 256, 512,
1024] if cardinality == 32 else [256, 512, 1024, 2048]
self.conv1_1 = ConvBNLayer(
num_channels=3,
num_filters=32,
filter_size=3,
stride=2,
act='relu',
name="conv1_1")
self.conv1_2 = ConvBNLayer(
num_channels=32,
num_filters=32,
filter_size=3,
stride=1,
act='relu',
name="conv1_2")
self.conv1_3 = ConvBNLayer(
num_channels=32,
num_filters=64,
filter_size=3,
stride=1,
act='relu',
name="conv1_3")
self.pool2d_max = Pool2D(
pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
self.block_list = []
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
if layers in [101, 152] and block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(
num_channels=num_channels[block] if i == 0 else
num_filters[block] * int(64 // self.cardinality),
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=self.cardinality,
shortcut=shortcut,
if_first=block == i == 0,
name=conv_name))
self.block_list.append(bottleneck_block)
shortcut = True
self.pool2d_avg = Pool2D(
pool_size=7, pool_type='avg', global_pooling=True)
self.pool2d_avg_channels = num_channels[-1] * 2
stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
self.out = Linear(
self.pool2d_avg_channels,
class_dim,
param_attr=ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv),
name="fc_weights"),
bias_attr=ParamAttr(name="fc_offset"))
return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
def forward(self, inputs):
y = self.conv1_1(inputs)
y = self.conv1_2(y)
y = self.conv1_3(y)
y = self.pool2d_max(y)
for block in self.block_list:
y = block(y)
y = self.pool2d_avg(y)
y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_channels])
y = self.out(y)
return y
def ResNeXt50_vd_64x4d():
model = ResNeXt(layers=50, is_3x3=True)
def ResNeXt50_vd_32x4d(**args):
model = ResNeXt(layers=50, cardinality=32, **args)
return model
def ResNeXt50_vd_32x4d():
model = ResNeXt(layers=50, cardinality=32, is_3x3=True)
def ResNeXt50_vd_64x4d(**args):
model = ResNeXt(layers=50, cardinality=64, **args)
return model
def ResNeXt101_vd_64x4d():
model = ResNeXt(layers=101, is_3x3=True)
def ResNeXt101_vd_32x4d(**args):
model = ResNeXt(layers=101, cardinality=32, **args)
return model
def ResNeXt101_vd_32x4d():
model = ResNeXt(layers=101, cardinality=32, is_3x3=True)
def ResNeXt101_vd_64x4d(**args):
model = ResNeXt(layers=101, cardinality=64, **args)
return model
def ResNeXt152_vd_64x4d():
model = ResNeXt(layers=152, is_3x3=True)
def ResNeXt152_vd_32x4d(**args):
model = ResNeXt(layers=152, cardinality=32, **args)
return model
def ResNeXt152_vd_32x4d():
model = ResNeXt(layers=152, cardinality=32, is_3x3=True)
def ResNeXt152_vd_64x4d(**args):
model = ResNeXt(layers=152, cardinality=64, **args)
return model
......@@ -106,7 +106,7 @@ class VGGNet(fluid.dygraph.Layer):
x = self._conv_block_4(x)
x = self._conv_block_5(x)
x = fluid.layers.flatten(x, axis=0)
x = fluid.layers.reshape(x, [0,-1])
x = self._fc1(x)
x = self._drop(x)
x = self._fc2(x)
......
......@@ -19,13 +19,10 @@ from __future__ import print_function
import os
import argparse
import paddle.fluid as fluid
import program
from ppcls.data import Reader
from ppcls.utils.config import get_config
from ppcls.utils.save_load import init_model
from ppcls.utils import logger
from paddle.fluid.incubate.fleet.collective import fleet
from paddle.fluid.incubate.fleet.base import role_maker
......@@ -45,37 +42,25 @@ def parse_args():
action='append',
default=[],
help='config options to be overridden')
args = parser.parse_args()
return args
def main(args):
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
config = get_config(args.config, overrides=args.override, show=True)
gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0))
# assign the place
gpu_id = fluid.dygraph.parallel.Env().dev_id
place = fluid.CUDAPlace(gpu_id)
startup_prog = fluid.Program()
valid_prog = fluid.Program()
valid_dataloader, valid_fetchs = program.build(
config, valid_prog, startup_prog, is_train=False)
valid_prog = valid_prog.clone(for_test=True)
exe = fluid.Executor(place)
exe.run(startup_prog)
init_model(config, valid_prog, exe)
valid_reader = Reader(config, 'valid')()
valid_dataloader.set_sample_list_generator(valid_reader, place)
compiled_valid_prog = program.compile(config, valid_prog)
program.run(valid_dataloader, exe, compiled_valid_prog, valid_fetchs, -1,
'eval')
with fluid.dygraph.guard(place):
pre_weights_dict = fluid.dygraph.load_dygraph(config.pretrained_model)[0]
strategy = fluid.dygraph.parallel.prepare_context()
net = program.create_model(config.ARCHITECTURE, config.classes_num)
net = fluid.dygraph.parallel.DataParallel(net, strategy)
net.set_dict(pre_weights_dict)
valid_dataloader = program.create_dataloader()
valid_reader = Reader(config, 'valid')()
valid_dataloader.set_sample_list_generator(valid_reader, place)
net.eval()
top1_acc = program.run(valid_dataloader, config, net, None, 0, 'valid')
if __name__ == '__main__':
args = parse_args()
......
wget https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar
tar -xf ResNet50_pretrained.tar
\ No newline at end of file
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from resnet import ResNet50
import paddle.fluid as fluid
import numpy as np
import cv2
import utils
import argparse
def parse_args():
def str2bool(v):
return v.lower() in ("true", "t", "1")
parser = argparse.ArgumentParser()
parser.add_argument("-i", "--image_file", type=str)
parser.add_argument("-c", "--channel_num", type=int)
parser.add_argument("-p", "--pretrained_model", type=str)
parser.add_argument("--show", type=str2bool, default=False)
parser.add_argument("--interpolation", type=int, default=1)
parser.add_argument("--save_path", type=str)
parser.add_argument("--use_gpu", type=str2bool, default=True)
return parser.parse_args()
def create_operators(interpolation=1):
size = 224
img_mean = [0.485, 0.456, 0.406]
img_std = [0.229, 0.224, 0.225]
img_scale = 1.0 / 255.0
decode_op = utils.DecodeImage()
resize_op = utils.ResizeImage(resize_short=256, interpolation=interpolation)
crop_op = utils.CropImage(size=(size, size))
normalize_op = utils.NormalizeImage(
scale=img_scale, mean=img_mean, std=img_std)
totensor_op = utils.ToTensor()
return [decode_op, resize_op, crop_op, normalize_op, totensor_op]
def preprocess(fname, ops):
data = open(fname, 'rb').read()
for op in ops:
data = op(data)
return data
def main():
args = parse_args()
operators = create_operators(args.interpolation)
# assign the place
if args.use_gpu:
gpu_id = fluid.dygraph.parallel.Env().dev_id
place = fluid.CUDAPlace(gpu_id)
else:
place = fluid.CPUPlace()
#pre_weights_dict = fluid.load_program_state(args.pretrained_model)
with fluid.dygraph.guard(place):
net = ResNet50()
data = preprocess(args.image_file, operators)
data = np.expand_dims(data, axis=0)
data = fluid.dygraph.to_variable(data)
dy_weights_dict = net.state_dict()
pre_weights_dict_new = {}
for key in dy_weights_dict:
weights_name = dy_weights_dict[key].name
pre_weights_dict_new[key] = pre_weights_dict[weights_name]
net.set_dict(pre_weights_dict_new)
net.eval()
_, fm = net(data)
assert args.channel_num >= 0 and args.channel_num <= fm.shape[1], "the channel is out of the range, should be in {} but got {}".format([0, fm.shape[1]], args.channel_num)
fm = (np.squeeze(fm[0][args.channel_num].numpy())*255).astype(np.uint8)
if fm is not None:
if args.save:
cv2.imwrite(args.save_path, fm)
if args.show:
cv2.show(fm)
cv2.waitKey(0)
if __name__ == "__main__":
main()
此差异已折叠。
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import cv2
import numpy as np
class DecodeImage(object):
def __init__(self, to_rgb=True):
self.to_rgb = to_rgb
def __call__(self, img):
data = np.frombuffer(img, dtype='uint8')
img = cv2.imdecode(data, 1)
if self.to_rgb:
assert img.shape[2] == 3, 'invalid shape of image[%s]' % (
img.shape)
img = img[:, :, ::-1]
return img
class ResizeImage(object):
def __init__(self, resize_short=None, interpolation=1):
self.resize_short = resize_short
self.interpolation = interpolation
def __call__(self, img):
img_h, img_w = img.shape[:2]
percent = float(self.resize_short) / min(img_w, img_h)
w = int(round(img_w * percent))
h = int(round(img_h * percent))
return cv2.resize(img, (w, h), interpolation=self.interpolation)
class CropImage(object):
def __init__(self, size):
if type(size) is int:
self.size = (size, size)
else:
self.size = size
def __call__(self, img):
w, h = self.size
img_h, img_w = img.shape[:2]
w_start = (img_w - w) // 2
h_start = (img_h - h) // 2
w_end = w_start + w
h_end = h_start + h
return img[h_start:h_end, w_start:w_end, :]
class NormalizeImage(object):
def __init__(self, scale=None, mean=None, std=None):
self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
mean = mean if mean is not None else [0.485, 0.456, 0.406]
std = std if std is not None else [0.229, 0.224, 0.225]
shape = (1, 1, 3)
self.mean = np.array(mean).reshape(shape).astype('float32')
self.std = np.array(std).reshape(shape).astype('float32')
def __call__(self, img):
return (img.astype('float32') * self.scale - self.mean) / self.std
class ToTensor(object):
def __init__(self):
pass
def __call__(self, img):
img = img.transpose((2, 0, 1))
return img
......@@ -329,9 +329,13 @@ def run(dataloader, config, net, optimizer=None, epoch=0, mode='train'):
feeds = create_feeds(batch, use_mix)
fetchs = create_fetchs(feeds, net, config, mode)
if mode == 'train':
avg_loss = net.scale_loss(fetchs['loss'])
avg_loss.backward()
net.apply_collective_grads()
if config["use_data_parallel"]:
avg_loss = net.scale_loss(fetchs['loss'])
avg_loss.backward()
net.apply_collective_grads()
else:
avg_loss = fetchs['loss']
avg_loss.backward()
optimizer.minimize(avg_loss)
net.clear_gradients()
......
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册