提交 2856b7a7 编写于 作者: C cuicheng01

update PULC_person_exists.md

上级 54c5b7cf
...@@ -30,7 +30,7 @@ ...@@ -30,7 +30,7 @@
- [6.3 基于 C++ 预测引擎推理](#6.3) - [6.3 基于 C++ 预测引擎推理](#6.3)
- [6.4 服务化部署](#6.4) - [6.4 服务化部署](#6.4)
- [6.5 端侧部署](#6.5) - [6.5 端侧部署](#6.5)
- [6.6 Paddle2ONNX模型转换与预测](#6.6) - [6.6 Paddle2ONNX 模型转换与预测](#6.6)
<a name="1"></a> <a name="1"></a>
...@@ -78,7 +78,7 @@ ...@@ -78,7 +78,7 @@
<a name="3.2"></a> <a name="3.2"></a>
### 3.1 数据准备 ### 3.2 数据准备
<a name="3.2.1"></a> <a name="3.2.1"></a>
...@@ -147,7 +147,7 @@ cd ../ ...@@ -147,7 +147,7 @@ cd ../
* 关于 `train_list.txt``val_list.txt`的格式说明,可以参考[PaddleClas分类数据集格式说明](../data_preparation/classification_dataset.md#1-数据集格式说明) * 关于 `train_list.txt``val_list.txt`的格式说明,可以参考[PaddleClas分类数据集格式说明](../data_preparation/classification_dataset.md#1-数据集格式说明)
* 关于如何得到蒸馏的标签文件可以参考[知识蒸馏标签获得](@ruoyu) * 关于如何得到蒸馏的标签文件可以参考[知识蒸馏标签获得方法](@ruoyu)
<a name="3.3"></a> <a name="3.3"></a>
...@@ -223,7 +223,7 @@ python3 tools/infer.py \ ...@@ -223,7 +223,7 @@ python3 tools/infer.py \
### 4.1 SKL-UGI 知识蒸馏 ### 4.1 SKL-UGI 知识蒸馏
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](@ruoyu) SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](@ruoyu)
<a name="4.1.1"></a> <a name="4.1.1"></a>
...@@ -264,7 +264,7 @@ python3 -m paddle.distributed.launch \ ...@@ -264,7 +264,7 @@ python3 -m paddle.distributed.launch \
## 5. 超参搜索 ## 5. 超参搜索
3.2节和4.1节所使用的超参数是根据PaddleClas提供的 `SHAS超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[SHAS超参数搜索策略](#TODO)来获得更好的训练超参数。 [3.2 节](#3.2)[4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `SHAS 超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[SHAS 超参数搜索策略](#TODO)来获得更好的训练超参数。
**备注:** 此部分内容是可选内容,搜索过程需要较长的时间,您可以根据自己的硬件情况来选择执行。如果没有更换数据集,可以忽略此节内容。 **备注:** 此部分内容是可选内容,搜索过程需要较长的时间,您可以根据自己的硬件情况来选择执行。如果没有更换数据集,可以忽略此节内容。
...@@ -278,7 +278,7 @@ python3 -m paddle.distributed.launch \ ...@@ -278,7 +278,7 @@ python3 -m paddle.distributed.launch \
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html) Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
当使用 Paddle Inference 推理时,加载的模型为 inference 模型。本案例提供了两种获得 inference 模型的方法,如果希望得到和文档相同的结果,请选择[直接下载 inference 模型](#6.1.2)的方式。 当使用 Paddle Inference 推理时,加载的模型类型为 inference 模型。本案例提供了两种获得 inference 模型的方法,如果希望得到和文档相同的结果,请选择[直接下载 inference 模型](#6.1.2)的方式。
<a name="6.1.1"></a> <a name="6.1.1"></a>
...@@ -395,16 +395,14 @@ PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示 ...@@ -395,16 +395,14 @@ PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示
### 6.5 端侧部署 ### 6.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite) Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md) PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
完成相应的部署工作。
<a name="6.6"></a> <a name="6.6"></a>
### 6.6 Paddle2ONNX模型转换与预测 ### 6.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对ONNX开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX) Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX模型转换与预测](@shuilong) PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。
完成相应的部署工作。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册