Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
27dd1bc7
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
27dd1bc7
编写于
6月 27, 2022
作者:
H
HydrogenSulfate
浏览文件
操作
浏览文件
下载
差异文件
merge develop and solve conflicts
上级
d59d68f2
5cc6c50c
变更
32
隐藏空白更改
内联
并排
Showing
32 changed file
with
749 addition
and
200 deletion
+749
-200
docs/en/algorithm_introduction/ImageNet_models_en.md
docs/en/algorithm_introduction/ImageNet_models_en.md
+2
-2
docs/en/models/MobileViT_en.md
docs/en/models/MobileViT_en.md
+2
-2
docs/zh_CN/algorithm_introduction/ImageNet_models.md
docs/zh_CN/algorithm_introduction/ImageNet_models.md
+2
-2
docs/zh_CN/models/MobileViT.md
docs/zh_CN/models/MobileViT.md
+2
-2
ppcls/arch/backbone/model_zoo/vision_transformer.py
ppcls/arch/backbone/model_zoo/vision_transformer.py
+1
-1
ppcls/engine/evaluation/retrieval.py
ppcls/engine/evaluation/retrieval.py
+9
-1
ppcls/optimizer/optimizer.py
ppcls/optimizer/optimizer.py
+21
-9
test_tipc/config/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5_train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
...train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
+9
-9
test_tipc/config/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5_train_ptq_infer_python.txt
...eneralRecognition_PPLCNet_x2_5_train_ptq_infer_python.txt
+54
-0
test_tipc/config/MobileNetV3/MobileNetV3_large_x1_0_train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
...train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
+15
-15
test_tipc/config/MobileNetV3/MobileNetV3_large_x1_0_train_ptq_infer_python.txt
...leNetV3/MobileNetV3_large_x1_0_train_ptq_infer_python.txt
+60
-0
test_tipc/config/PPHGNet/PPHGNet_small_train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
...train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
+51
-0
test_tipc/config/PPHGNet/PPHGNet_small_train_ptq_infer_python.txt
...c/config/PPHGNet/PPHGNet_small_train_ptq_infer_python.txt
+53
-0
test_tipc/config/PPHGNet/PPHGNet_tiny_train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
...train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
+51
-0
test_tipc/config/PPLCNet/PPLCNet_x0_25_train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
...train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
+9
-9
test_tipc/config/PPLCNet/PPLCNet_x0_35_train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
...train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
+9
-9
test_tipc/config/PPLCNet/PPLCNet_x0_5_train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
...train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
+9
-9
test_tipc/config/PPLCNet/PPLCNet_x0_75_train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
...train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
+9
-9
test_tipc/config/PPLCNet/PPLCNet_x1_0_train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
...train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
+9
-9
test_tipc/config/PPLCNet/PPLCNet_x1_0_train_ptq_infer_python.txt
...pc/config/PPLCNet/PPLCNet_x1_0_train_ptq_infer_python.txt
+53
-0
test_tipc/config/PPLCNet/PPLCNet_x1_5_train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
...train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
+9
-9
test_tipc/config/PPLCNet/PPLCNet_x2_0_train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
...train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
+9
-9
test_tipc/config/PPLCNet/PPLCNet_x2_5_train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
...train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
+11
-11
test_tipc/config/PPLCNetV2/PPLCNetV2_base_train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
...train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
+51
-0
test_tipc/config/PPLCNetV2/PPLCNetV2_base_train_ptq_infer_python.txt
...onfig/PPLCNetV2/PPLCNetV2_base_train_ptq_infer_python.txt
+53
-0
test_tipc/config/ResNet/ResNet50_train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
...train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
+9
-9
test_tipc/config/ResNet/ResNet50_vd_train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
...train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
+15
-15
test_tipc/config/ResNet/ResNet50_vd_train_ptq_infer_python.txt
...tipc/config/ResNet/ResNet50_vd_train_ptq_infer_python.txt
+60
-0
test_tipc/config/SwinTransformer/SwinTransformer_tiny_patch4_window7_224_train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
...train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
+9
-9
test_tipc/config/SwinTransformer/SwinTransformer_tiny_patch4_window7_224_train_ptq_infer_python.txt
...former_tiny_patch4_window7_224_train_ptq_infer_python.txt
+60
-0
test_tipc/prepare.sh
test_tipc/prepare.sh
+30
-13
test_tipc/test_train_inference_python.sh
test_tipc/test_train_inference_python.sh
+3
-37
未找到文件。
docs/en/algorithm_introduction/ImageNet_models_en.md
浏览文件 @
27dd1bc7
...
...
@@ -541,9 +541,9 @@ The accuracy and speed indicators of MobileViT series models are shown in the fo
| Model | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(M) | Params(M) | Pretrained Model Download Address | Inference Model Download Address |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| MobileViT_XXS | 0.6867 | 0.8878 | - | - | - |
1849.35 | 5.59
|
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileViT_XXS_pretrained.pdparams
)
|
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileViT_XXS_infer.tar
)
|
| MobileViT_XXS | 0.6867 | 0.8878 | - | - | - |
337.24 | 1.28
|
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileViT_XXS_pretrained.pdparams
)
|
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileViT_XXS_infer.tar
)
|
| MobileViT_XS | 0.7454 | 0.9227 | - | - | - | 930.75 | 2.33 |
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileViT_XS_pretrained.pdparams
)
|
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileViT_XS_infer.tar
)
|
| MobileViT_S | 0.7814 | 0.9413 | - | - | - |
337.24 | 1.28
|
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileViT_S_pretrained.pdparams
)
|
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileViT_S_infer.tar
)
|
| MobileViT_S | 0.7814 | 0.9413 | - | - | - |
1849.35 | 5.59
|
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileViT_S_pretrained.pdparams
)
|
[
Download link
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileViT_S_infer.tar
)
|
<a
name=
"26"
></a>
...
...
docs/en/models/MobileViT_en.md
浏览文件 @
27dd1bc7
...
...
@@ -18,6 +18,6 @@ MobileViT is a lightweight visual Transformer network that can be used as a gene
| Models | Top1 | Top5 | Reference
<br>
top1 | Reference
<br>
top5 | FLOPs
<br>
(M) | Params
<br>
(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| MobileViT_XXS | 0.6867 | 0.8878 | 0.690 | - |
1849.35 | 5.59
|
| MobileViT_XXS | 0.6867 | 0.8878 | 0.690 | - |
337.24 | 1.28
|
| MobileViT_XS | 0.7454 | 0.9227 | 0.747 | - | 930.75 | 2.33 |
| MobileViT_S | 0.7814 | 0.9413 | 0.783 | - |
337.24 | 1.28
|
| MobileViT_S | 0.7814 | 0.9413 | 0.783 | - |
1849.35 | 5.59
|
docs/zh_CN/algorithm_introduction/ImageNet_models.md
浏览文件 @
27dd1bc7
...
...
@@ -568,9 +568,9 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(M) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| MobileViT_XXS | 0.6867 | 0.8878 | - | - | - |
1849.35 | 5.59
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileViT_XXS_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileViT_XXS_infer.tar
)
|
| MobileViT_XXS | 0.6867 | 0.8878 | - | - | - |
337.24 | 1.28
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileViT_XXS_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileViT_XXS_infer.tar
)
|
| MobileViT_XS | 0.7454 | 0.9227 | - | - | - | 930.75 | 2.33 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileViT_XS_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileViT_XS_infer.tar
)
|
| MobileViT_S | 0.7814 | 0.9413 | - | - | - |
337.24 | 1.28
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileViT_S_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileViT_S_infer.tar
)
|
| MobileViT_S | 0.7814 | 0.9413 | - | - | - |
1849.35 | 5.59
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileViT_S_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileViT_S_infer.tar
)
|
<a
name=
"Others"
></a>
...
...
docs/zh_CN/models/MobileViT.md
浏览文件 @
27dd1bc7
...
...
@@ -17,6 +17,6 @@ MobileViT 是一个轻量级的视觉 Transformer 网络,可以用作计算机
| Models | Top1 | Top5 | Reference
<br>
top1 | Reference
<br>
top5 | FLOPs
<br>
(M) | Params
<br>
(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| MobileViT_XXS | 0.6867 | 0.8878 | 0.690 | - |
1849.35 | 5.59
|
| MobileViT_XXS | 0.6867 | 0.8878 | 0.690 | - |
337.24 | 1.28
|
| MobileViT_XS | 0.7454 | 0.9227 | 0.747 | - | 930.75 | 2.33 |
| MobileViT_S | 0.7814 | 0.9413 | 0.783 | - |
337.24 | 1.28
|
| MobileViT_S | 0.7814 | 0.9413 | 0.783 | - |
1849.35 | 5.59
|
ppcls/arch/backbone/model_zoo/vision_transformer.py
浏览文件 @
27dd1bc7
...
...
@@ -62,7 +62,7 @@ def drop_path(x, drop_prob=0., training=False):
return
x
keep_prob
=
paddle
.
to_tensor
(
1
-
drop_prob
)
shape
=
(
paddle
.
shape
(
x
)[
0
],
)
+
(
1
,
)
*
(
x
.
ndim
-
1
)
random_tensor
=
keep_prob
+
paddle
.
rand
(
shape
,
dtype
=
x
.
dtype
)
random_tensor
=
keep_prob
+
paddle
.
rand
(
shape
).
astype
(
x
.
dtype
)
random_tensor
=
paddle
.
floor
(
random_tensor
)
# binarize
output
=
x
.
divide
(
keep_prob
)
*
random_tensor
return
output
...
...
ppcls/engine/evaluation/retrieval.py
浏览文件 @
27dd1bc7
...
...
@@ -159,7 +159,15 @@ def cal_feature(engine, name='gallery'):
if
len
(
batch
)
==
3
:
has_unique_id
=
True
batch
[
2
]
=
batch
[
2
].
reshape
([
-
1
,
1
]).
astype
(
"int64"
)
out
=
engine
.
model
(
batch
[
0
],
batch
[
1
])
if
engine
.
amp
and
engine
.
amp_eval
:
with
paddle
.
amp
.
auto_cast
(
custom_black_list
=
{
"flatten_contiguous_range"
,
"greater_than"
},
level
=
engine
.
amp_level
):
out
=
engine
.
model
(
batch
[
0
],
batch
[
1
])
else
:
out
=
engine
.
model
(
batch
[
0
],
batch
[
1
])
if
"Student"
in
out
:
out
=
out
[
"Student"
]
...
...
ppcls/optimizer/optimizer.py
浏览文件 @
27dd1bc7
...
...
@@ -16,9 +16,9 @@ from __future__ import absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
paddle
import
optimizer
as
optim
import
paddle
import
inspect
from
paddle
import
optimizer
as
optim
from
ppcls.utils
import
logger
...
...
@@ -49,21 +49,32 @@ class SGD(object):
learning_rate
=
0.001
,
weight_decay
=
None
,
grad_clip
=
None
,
multi_precision
=
False
,
name
=
None
):
self
.
learning_rate
=
learning_rate
self
.
weight_decay
=
weight_decay
self
.
grad_clip
=
grad_clip
self
.
multi_precision
=
multi_precision
self
.
name
=
name
def
__call__
(
self
,
model_list
):
# model_list is None in static graph
parameters
=
sum
([
m
.
parameters
()
for
m
in
model_list
],
[])
if
model_list
else
None
opt
=
optim
.
SGD
(
learning_rate
=
self
.
learning_rate
,
parameters
=
parameters
,
weight_decay
=
self
.
weight_decay
,
grad_clip
=
self
.
grad_clip
,
name
=
self
.
name
)
argspec
=
inspect
.
getargspec
(
optim
.
SGD
.
__init__
).
args
if
'multi_precision'
in
argspec
:
opt
=
optim
.
SGD
(
learning_rate
=
self
.
learning_rate
,
parameters
=
parameters
,
weight_decay
=
self
.
weight_decay
,
grad_clip
=
self
.
grad_clip
,
multi_precision
=
self
.
multi_precision
,
name
=
self
.
name
)
else
:
opt
=
optim
.
SGD
(
learning_rate
=
self
.
learning_rate
,
parameters
=
parameters
,
weight_decay
=
self
.
weight_decay
,
grad_clip
=
self
.
grad_clip
,
name
=
self
.
name
)
return
opt
...
...
@@ -242,8 +253,9 @@ class AdamW(object):
if
self
.
one_dim_param_no_weight_decay
:
self
.
no_weight_decay_param_name_list
+=
[
p
.
name
for
model
in
model_list
for
n
,
p
in
model
.
named_parameters
()
if
len
(
p
.
shape
)
==
1
p
.
name
for
model
in
model_list
for
n
,
p
in
model
.
named_parameters
()
if
len
(
p
.
shape
)
==
1
]
if
model_list
else
[]
opt
=
optim
.
AdamW
(
...
...
test_tipc/config/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5_train_
amp_infer_python
.txt
→
test_tipc/config/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5_train_
linux_gpu_normal_amp_infer_python_linux_gpu_cpu
.txt
浏览文件 @
27dd1bc7
...
...
@@ -13,15 +13,15 @@ train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:amp_train
amp_train:tools/train.py -c ppcls/configs/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o AMP.scale_loss=
128 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2
amp_train:tools/train.py -c ppcls/configs/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o AMP.scale_loss=
65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2 -o Optimizer.multi_precision=True
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5.yaml
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5.yaml
-o AMP.scale_loss=65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2
null:null
##
===========================infer_params==========================
...
...
@@ -39,14 +39,14 @@ infer_export:True
infer_quant:Fasle
inference:python/predict_rec.py -c configs/inference_rec.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:
True|
False
-o Global.cpu_num_threads:
1|
6
-o Global.batch_size:1
|16
-o Global.use_tensorrt:
True|
False
-o Global.use_fp16:
True|
False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:6
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.rec_inference_model_dir:../inference
-o Global.infer_imgs:../dataset/Aliproduct/demo_test/
-o Global.save_log_path:null
-o Global.benchmark:
Tru
e
-o Global.benchmark:
Fals
e
null:null
null:null
test_tipc/config/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5_train_ptq_infer_python.txt
0 → 100644
浏览文件 @
27dd1bc7
===========================train_params===========================
model_name:GeneralRecognition_PPLCNet_x2_5
python:python3.7
gpu_list:0
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=100
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:pact_train
norm_train:null
pact_train:tools/train.py -c ppcls/configs/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:null
quant_export:tools/export_model.py -c ppcls/configs/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5.yaml
fpgm_export:null
distill_export:null
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5.yaml -o Global.save_inference_dir=./general_PPLCNet_x2_5_lite_v1.0_infer
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/general_PPLCNet_x2_5_lite_v1.0_infer.tar
infer_model:./general_PPLCNet_x2_5_lite_v1.0_infer/
infer_export:True
infer_quant:Fasle
inference:python/predict_rec.py -c configs/inference_rec.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.rec_inference_model_dir:../inference
-o Global.infer_imgs:../dataset/Aliproduct/demo_test/
-o Global.save_log_path:null
-o Global.benchmark:False
null:null
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
\ No newline at end of file
test_tipc/config/MobileNetV3/MobileNetV3_large_x1_0_train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
浏览文件 @
27dd1bc7
...
...
@@ -3,7 +3,7 @@ model_name:MobileNetV3_large_x1_0
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:
amp
-o Global.auto_cast:
null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
...
...
@@ -12,16 +12,16 @@ train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:
norm_train|pact_train|fpgm
_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=Fals
e
pact_train:
tools/train.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_quantization.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
fpgm_train:
tools/train.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_prune.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
trainer:
amp
_train
amp_train:tools/train.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o AMP.scale_loss=65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2 -o Optimizer.multi_precision=Tru
e
pact_train:
null
fpgm_train:
null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml
-o AMP.scale_loss=65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2
null:null
##
===========================infer_params==========================
...
...
@@ -33,20 +33,20 @@ fpgm_export:tools/export_model.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_p
distill_export:null
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml -o Global.save_inference_dir=./inference
export2:null
inference_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/whole_chain/MobileNetV3_large_x1_0_inference.tar
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_pretrained.pdparams
infer_model:../inference/
infer_export:
null
infer_export:
True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:
True|
False
-o Global.cpu_num_threads:
1|
6
-o Global.batch_size:1
|16
-o Global.use_tensorrt:
True|
False
-o Global.use_fp16:
True|
False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:6
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:
Tru
e
-o Global.benchmark:
Fals
e
null:null
null:null
test_tipc/config/MobileNetV3/MobileNetV3_large_x1_0_train_ptq_infer_python.txt
0 → 100644
浏览文件 @
27dd1bc7
===========================train_params===========================
model_name:MobileNetV3_large_x1_0
python:python3.7
gpu_list:0
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:tools/train.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_quantization.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
fpgm_train:tools/train.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_prune.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
distill_train:null
to_static_train:-o Global.to_static=True
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml
quant_export:tools/export_model.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_quantization.yaml
fpgm_export:tools/export_model.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_prune.yaml
distill_export:null
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml -o Global.save_inference_dir=./MobileNetV3_large_x1_0_infer
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_0_infer.tar
infer_model:./MobileNetV3_large_x1_0_infer/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
-o Global.save_log_path:null
-o Global.benchmark:False
null:null
null:null
===========================train_benchmark_params==========================
batch_size:256|640
fp_items:fp32
epoch:1
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
\ No newline at end of file
test_tipc/config/PPHGNet/PPHGNet_small_train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
0 → 100644
浏览文件 @
27dd1bc7
===========================train_params===========================
model_name:PPHGNet_small
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:amp_train
amp_train:tools/train.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o AMP.scale_loss=65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2 -o Optimizer.multi_precision=True
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml -o AMP.scale_loss=65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_small_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:6
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:False
null:null
test_tipc/config/PPHGNet/PPHGNet_small_train_ptq_infer_python.txt
0 → 100644
浏览文件 @
27dd1bc7
===========================train_params===========================
model_name:PPHGNet_small
python:python3.7
gpu_list:0
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml -o Global.save_inference_dir=./PPHGNet_small_infer
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_small_infer.tar
infer_model:./PPHGNet_small_infer/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml -o PreProcess.transform_ops.0.ResizeImage.resize_short=236
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
-o Global.save_log_path:null
-o Global.benchmark:False
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
test_tipc/config/PPHGNet/PPHGNet_tiny_train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
0 → 100644
浏览文件 @
27dd1bc7
===========================train_params===========================
model_name:PPHGNet_tiny
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:amp_train
amp_train:tools/train.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_tiny.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o AMP.scale_loss=65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2 -o Optimizer.multi_precision=True
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_tiny.yaml -o AMP.scale_loss=65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_tiny.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_tiny_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:6
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:False
null:null
test_tipc/config/PPLCNet/PPLCNet_x0_25_train_
amp_infer_python
.txt
→
test_tipc/config/PPLCNet/PPLCNet_x0_25_train_
linux_gpu_normal_amp_infer_python_linux_gpu_cpu
.txt
浏览文件 @
27dd1bc7
...
...
@@ -13,15 +13,15 @@ train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:amp_train
amp_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x0_25.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o AMP.scale_loss=
128 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2
amp_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x0_25.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o AMP.scale_loss=
65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2 -o Optimizer.multi_precision=True
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x0_25.yaml
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x0_25.yaml
-o AMP.scale_loss=65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2
null:null
##
===========================infer_params==========================
...
...
@@ -39,13 +39,13 @@ infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:
True|
False
-o Global.cpu_num_threads:
1|
6
-o Global.batch_size:1
|16
-o Global.use_tensorrt:
True|
False
-o Global.use_fp16:
True|
False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:6
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:
Tru
e
-o Global.benchmark:
Fals
e
null:null
test_tipc/config/PPLCNet/PPLCNet_x0_35_train_
amp_infer_python
.txt
→
test_tipc/config/PPLCNet/PPLCNet_x0_35_train_
linux_gpu_normal_amp_infer_python_linux_gpu_cpu
.txt
浏览文件 @
27dd1bc7
...
...
@@ -13,15 +13,15 @@ train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:amp_train
amp_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x0_35.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o AMP.scale_loss=
128 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2
amp_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x0_35.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o AMP.scale_loss=
65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2 -o Optimizer.multi_precision=True
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x0_35.yaml
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x0_35.yaml
-o AMP.scale_loss=65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2
null:null
##
===========================infer_params==========================
...
...
@@ -39,13 +39,13 @@ infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:
True|
False
-o Global.cpu_num_threads:
1|
6
-o Global.batch_size:1
|16
-o Global.use_tensorrt:
True|
False
-o Global.use_fp16:
True|
False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:6
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:
Tru
e
-o Global.benchmark:
Fals
e
null:null
test_tipc/config/PPLCNet/PPLCNet_x0_5_train_
amp_infer_python
.txt
→
test_tipc/config/PPLCNet/PPLCNet_x0_5_train_
linux_gpu_normal_amp_infer_python_linux_gpu_cpu
.txt
浏览文件 @
27dd1bc7
...
...
@@ -13,15 +13,15 @@ train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:amp_train
amp_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x0_5.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o AMP.scale_loss=
128 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2
amp_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x0_5.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o AMP.scale_loss=
65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2 -o Optimizer.multi_precision=True
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x0_5.yaml
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x0_5.yaml
-o AMP.scale_loss=65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2
null:null
##
===========================infer_params==========================
...
...
@@ -39,13 +39,13 @@ infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:
True|
False
-o Global.cpu_num_threads:
1|
6
-o Global.batch_size:1
|16
-o Global.use_tensorrt:
True|
False
-o Global.use_fp16:
True|
False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:6
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:
Tru
e
-o Global.benchmark:
Fals
e
null:null
test_tipc/config/PPLCNet/PPLCNet_x0_75_train_
amp_infer_python
.txt
→
test_tipc/config/PPLCNet/PPLCNet_x0_75_train_
linux_gpu_normal_amp_infer_python_linux_gpu_cpu
.txt
浏览文件 @
27dd1bc7
...
...
@@ -13,15 +13,15 @@ train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:amp_train
amp_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x0_75.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o AMP.scale_loss=
128 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2
amp_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x0_75.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o AMP.scale_loss=
65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2 -o Optimizer.multi_precision=True
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x0_75.yaml
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x0_75.yaml
-o AMP.scale_loss=65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2
null:null
##
===========================infer_params==========================
...
...
@@ -39,13 +39,13 @@ infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:
True|
False
-o Global.cpu_num_threads:
1|
6
-o Global.batch_size:1
|16
-o Global.use_tensorrt:
True|
False
-o Global.use_fp16:
True|
False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:6
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:
Tru
e
-o Global.benchmark:
Fals
e
null:null
test_tipc/config/PPLCNet/PPLCNet_x1_0_train_
amp_infer_python
.txt
→
test_tipc/config/PPLCNet/PPLCNet_x1_0_train_
linux_gpu_normal_amp_infer_python_linux_gpu_cpu
.txt
浏览文件 @
27dd1bc7
...
...
@@ -13,15 +13,15 @@ train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:amp_train
amp_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x1_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o AMP.scale_loss=
128 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2
amp_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x1_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o AMP.scale_loss=
65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2 -o Optimizer.multi_precision=True
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x1_0.yaml
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x1_0.yaml
-o AMP.scale_loss=65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2
null:null
##
===========================infer_params==========================
...
...
@@ -39,13 +39,13 @@ infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:
True|
False
-o Global.cpu_num_threads:
1|
6
-o Global.batch_size:1
|16
-o Global.use_tensorrt:
True|
False
-o Global.use_fp16:
True|
False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:6
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:
Tru
e
-o Global.benchmark:
Fals
e
null:null
test_tipc/config/PPLCNet/PPLCNet_x1_0_train_ptq_infer_python.txt
0 → 100644
浏览文件 @
27dd1bc7
===========================train_params===========================
model_name:PPLCNet_x1_0
python:python3.7
gpu_list:0
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x1_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x1_0.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x1_0.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x1_0.yaml -o Global.save_inference_dir=./PPLCNet_x1_0_infer
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x1_0_infer.tar
infer_model:./PPLCNet_x1_0_infer/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
-o Global.save_log_path:null
-o Global.benchmark:False
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
\ No newline at end of file
test_tipc/config/PPLCNet/PPLCNet_x1_5_train_
amp_infer_python
.txt
→
test_tipc/config/PPLCNet/PPLCNet_x1_5_train_
linux_gpu_normal_amp_infer_python_linux_gpu_cpu
.txt
浏览文件 @
27dd1bc7
...
...
@@ -13,15 +13,15 @@ train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:amp_train
amp_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x1_5.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o AMP.scale_loss=
128 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2
amp_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x1_5.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o AMP.scale_loss=
65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2 -o Optimizer.multi_precision=True
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x1_5.yaml
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x1_5.yaml
-o AMP.scale_loss=65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2
null:null
##
===========================infer_params==========================
...
...
@@ -39,13 +39,13 @@ infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:
True|
False
-o Global.cpu_num_threads:
1|
6
-o Global.batch_size:1
|16
-o Global.use_tensorrt:
True|
False
-o Global.use_fp16:
True|
False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:6
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:
Tru
e
-o Global.benchmark:
Fals
e
null:null
test_tipc/config/PPLCNet/PPLCNet_x2_0_train_
amp_infer_python
.txt
→
test_tipc/config/PPLCNet/PPLCNet_x2_0_train_
linux_gpu_normal_amp_infer_python_linux_gpu_cpu
.txt
浏览文件 @
27dd1bc7
...
...
@@ -13,15 +13,15 @@ train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:amp_train
amp_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x2_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o AMP.scale_loss=
128 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2
amp_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x2_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o AMP.scale_loss=
65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2 -o Optimizer.multi_precision=True
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x2_0.yaml
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x2_0.yaml
-o AMP.scale_loss=65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2
null:null
##
===========================infer_params==========================
...
...
@@ -39,13 +39,13 @@ infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:
True|
False
-o Global.cpu_num_threads:
1|
6
-o Global.batch_size:1
|16
-o Global.use_tensorrt:
True|
False
-o Global.use_fp16:
True|
False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:6
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:
Tru
e
-o Global.benchmark:
Fals
e
null:null
test_tipc/config/PPLCNet/PPLCNet_x2_5_train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
浏览文件 @
27dd1bc7
...
...
@@ -3,7 +3,7 @@ model_name:PPLCNet_x2_5
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:
amp
-o Global.auto_cast:
null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
...
...
@@ -12,16 +12,16 @@ train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:
norm
_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x2_5.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=Fals
e
trainer:
amp
_train
amp_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x2_5.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o AMP.scale_loss=65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2 -o Optimizer.multi_precision=Tru
e
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x2_5.yaml
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNet/PPLCNet_x2_5.yaml
-o AMP.scale_loss=65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2
null:null
##
===========================infer_params==========================
...
...
@@ -39,13 +39,13 @@ infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:
True|
False
-o Global.cpu_num_threads:
1|
6
-o Global.batch_size:1
|16
-o Global.use_tensorrt:
True|
False
-o Global.use_fp16:
True|
False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:6
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:
Tru
e
-o Global.benchmark:
Fals
e
null:null
test_tipc/config/PPLCNetV2/PPLCNetV2_base_train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
0 → 100644
浏览文件 @
27dd1bc7
===========================train_params===========================
model_name:PPLCNetV2_base
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:null
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:amp_train
amp_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNetV2/PPLCNetV2_base.yaml -o Global.seed=1234 -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o AMP.scale_loss=65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNetV2/PPLCNetV2_base.yaml -o AMP.scale_loss=65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/PPLCNetV2/PPLCNetV2_base.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNetV2_base_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:6
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:False
null:null
test_tipc/config/PPLCNetV2/PPLCNetV2_base_train_ptq_infer_python.txt
0 → 100644
浏览文件 @
27dd1bc7
===========================train_params===========================
model_name:PPLCNetV2_base
python:python3.7
gpu_list:0
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.first_bs:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNetV2/PPLCNetV2_base.yaml -o Global.seed=1234 -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNetV2/PPLCNetV2_base.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/PPLCNetV2/PPLCNetV2_base.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/PPLCNetV2/PPLCNetV2_base.yaml -o Global.save_inference_dir=./PPLCNetV2_base_infer
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNetV2_base_infer.tar
infer_model:./PPLCNetV2_base_infer/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
-o Global.save_log_path:null
-o Global.benchmark:False
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
test_tipc/config/ResNet/ResNet50_train_
purefp16_infer_python
.txt
→
test_tipc/config/ResNet/ResNet50_train_
linux_gpu_normal_amp_infer_python_linux_gpu_cpu
.txt
浏览文件 @
27dd1bc7
...
...
@@ -13,15 +13,15 @@ train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:amp_train
amp_train:tools/train.py -c ppcls/configs/ImageNet/ResNet/ResNet50
_amp_O1.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o AMP.scale_loss=128 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2
amp_train:tools/train.py -c ppcls/configs/ImageNet/ResNet/ResNet50
.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o AMP.scale_loss=65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2 -o Optimizer.multi_precision=True
pact_train:null
fpgm_train:null
distill_train:null
to_static_train:-o Global.to_static=True
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/ResNet/ResNet50.yaml
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/ResNet/ResNet50.yaml
-o AMP.scale_loss=65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2
null:null
##
===========================infer_params==========================
...
...
@@ -39,15 +39,15 @@ infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:
True|
False
-o Global.cpu_num_threads:
1|
6
-o Global.batch_size:1
|16
-o Global.use_tensorrt:
True|
False
-o Global.use_fp16:
True|
False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:6
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:
Tru
e
-o Global.benchmark:
Fals
e
null:null
null:null
===========================train_benchmark_params==========================
...
...
test_tipc/config/ResNet/ResNet50_vd_train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
浏览文件 @
27dd1bc7
...
...
@@ -3,7 +3,7 @@ model_name:ResNet50_vd
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:
amp
-o Global.auto_cast:
null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
...
...
@@ -12,16 +12,16 @@ train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:
norm_train|pact_train|fpgm
_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=Fals
e
pact_train:
tools/train.py -c ppcls/configs/slim/ResNet50_vd_quantization.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
fpgm_train:
tools/train.py -c ppcls/configs/slim/ResNet50_vd_prune.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
trainer:
amp
_train
amp_train:tools/train.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o AMP.scale_loss=65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2 -o Optimizer.multi_precision=Tru
e
pact_train:
null
fpgm_train:
null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml
-o AMP.scale_loss=65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2
null:null
##
===========================infer_params==========================
...
...
@@ -33,20 +33,20 @@ fpgm_export:tools/export_model.py -c ppcls/configs/slim/ResNet50_vd_prune.yaml
distill_export:null
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml -o Global.save_inference_dir=./inference
export2:null
inference_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/whole_chain/ResNet50_vd_inference.tar
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams
infer_model:../inference/
infer_export:
null
infer_export:
True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:
True|
False
-o Global.cpu_num_threads:
1|
6
-o Global.batch_size:1
|16
-o Global.use_tensorrt:
True|
False
-o Global.use_fp16:
True|
False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:6
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:
Tru
e
-o Global.benchmark:
Fals
e
null:null
null:null
test_tipc/config/ResNet/ResNet50_vd_train_ptq_infer_python.txt
0 → 100644
浏览文件 @
27dd1bc7
===========================train_params===========================
model_name:ResNet50_vd
python:python3.7
gpu_list:0
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=200
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
to_static_train:-o Global.to_static=True
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml -o Global.save_inference_dir=./ResNet50_vd_infer
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_infer.tar
infer_model:./ResNet50_vd_infer/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
-o Global.save_log_path:null
-o Global.benchmark:False
null:null
null:null
===========================train_benchmark_params==========================
batch_size:128
fp_items:fp32
epoch:1
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
\ No newline at end of file
test_tipc/config/SwinTransformer/SwinTransformer_tiny_patch4_window7_224_train_
amp_infer_python
.txt
→
test_tipc/config/SwinTransformer/SwinTransformer_tiny_patch4_window7_224_train_
linux_gpu_normal_amp_infer_python_linux_gpu_cpu
.txt
浏览文件 @
27dd1bc7
...
...
@@ -13,15 +13,15 @@ train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:amp_train
amp_train:tools/train.py -c ppcls/configs/ImageNet/SwinTransformer/SwinTransformer_tiny_patch4_window7_224.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o AMP.scale_loss=
128 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2
amp_train:tools/train.py -c ppcls/configs/ImageNet/SwinTransformer/SwinTransformer_tiny_patch4_window7_224.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o AMP.scale_loss=
65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2 -o Optimizer.multi_precision=True
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/SwinTransformer/SwinTransformer_tiny_patch4_window7_224.yaml
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/SwinTransformer/SwinTransformer_tiny_patch4_window7_224.yaml
-o AMP.scale_loss=65536 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2
null:null
##
===========================infer_params==========================
...
...
@@ -39,14 +39,14 @@ infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:
True|
False
-o Global.cpu_num_threads:
1|
6
-o Global.batch_size:1
|16
-o Global.use_tensorrt:
True|
False
-o Global.use_fp16:
True|
False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:6
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:
Tru
e
-o Global.benchmark:
Fals
e
null:null
null:null
test_tipc/config/SwinTransformer/SwinTransformer_tiny_patch4_window7_224_train_ptq_infer_python.txt
0 → 100644
浏览文件 @
27dd1bc7
===========================train_params===========================
model_name:SwinTransformer_tiny_patch4_window7_224
python:python3.7
gpu_list:0
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/SwinTransformer/SwinTransformer_tiny_patch4_window7_224.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/SwinTransformer/SwinTransformer_tiny_patch4_window7_224.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/SwinTransformer/SwinTransformer_tiny_patch4_window7_224.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/SwinTransformer/SwinTransformer_tiny_patch4_window7_224.yaml -o Global.save_inference_dir=./SwinTransformer_tiny_patch4_window7_224_infer
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_tiny_patch4_window7_224_infer.tar
infer_model:./SwinTransformer_tiny_patch4_window7_224_infer/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
-o Global.save_log_path:null
-o Global.benchmark:False
null:null
null:null
===========================train_benchmark_params==========================
batch_size:64|104
fp_items:fp32
epoch:1
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
\ No newline at end of file
test_tipc/prepare.sh
浏览文件 @
27dd1bc7
...
...
@@ -148,7 +148,7 @@ model_name=$(func_parser_value "${lines[1]}")
model_url_value
=
$(
func_parser_value
"
${
lines
[35]
}
"
)
model_url_key
=
$(
func_parser_key
"
${
lines
[35]
}
"
)
if
[[
$
FILENAME
==
*
GeneralRecognition
*
]]
;
then
if
[[
$
model_name
==
*
ShiTu
*
]]
;
then
cd
dataset
rm
-rf
Aliproduct
rm
-rf
train_reg_all_data.txt
...
...
@@ -185,20 +185,37 @@ if [[ ${MODE} = "lite_train_lite_infer" ]] || [[ ${MODE} = "lite_train_whole_inf
cd
../../
elif
[[
${
MODE
}
=
"whole_infer"
]]
;
then
# download data
cd
dataset
rm
-rf
ILSVRC2012
wget
-nc
https://paddle-imagenet-models-name.bj.bcebos.com/data/whole_chain/whole_chain_infer.tar
tar
xf whole_chain_infer.tar
ln
-s
whole_chain_infer ILSVRC2012
cd
ILSVRC2012
mv
val.txt val_list.txt
ln
-s
val_list.txt train_list.txt
cd
../../
if
[[
${
model_name
}
=
~
"GeneralRecognition"
]]
;
then
cd
dataset
rm
-rf
Aliproduct
rm
-rf
train_reg_all_data.txt
rm
-rf
demo_train
wget
-nc
https://paddle-imagenet-models-name.bj.bcebos.com/data/whole_chain/tipc_shitu_demo_data.tar
--no-check-certificate
tar
-xf
tipc_shitu_demo_data.tar
ln
-s
tipc_shitu_demo_data Aliproduct
ln
-s
tipc_shitu_demo_data/demo_train.txt train_reg_all_data.txt
ln
-s
tipc_shitu_demo_data/demo_train demo_train
cd
tipc_shitu_demo_data
ln
-s
demo_test.txt val_list.txt
cd
../../
else
cd
dataset
rm
-rf
ILSVRC2012
wget
-nc
https://paddle-imagenet-models-name.bj.bcebos.com/data/whole_chain/whole_chain_infer.tar
tar
xf whole_chain_infer.tar
ln
-s
whole_chain_infer ILSVRC2012
cd
ILSVRC2012
mv
val.txt val_list.txt
ln
-s
val_list.txt train_list.txt
cd
../../
fi
# download inference or pretrained model
eval
"wget -nc
$model_url_value
"
if
[[
$model_url_key
==
*
inference
*
]]
;
then
rm
-rf
inference
tar
xf
"
${
model_name
}
_infer.tar"
if
[[
${
model_url_value
}
=
~
".tar"
]]
;
then
tar_name
=
$(
func_get_url_file_name
"
${
model_url_value
}
"
)
echo
$tar_name
rm
-rf
{
tar_name
}
tar
xf
${
tar_name
}
fi
if
[[
$model_name
==
"SwinTransformer_large_patch4_window7_224"
||
$model_name
==
"SwinTransformer_large_patch4_window12_384"
]]
;
then
cmd
=
"mv
${
model_name
}
_22kto1k_pretrained.pdparams
${
model_name
}
_pretrained.pdparams"
...
...
test_tipc/test_train_inference_python.sh
浏览文件 @
27dd1bc7
...
...
@@ -111,9 +111,6 @@ function func_inference() {
for
use_gpu
in
${
use_gpu_list
[*]
}
;
do
if
[
${
use_gpu
}
=
"False"
]
||
[
${
use_gpu
}
=
"cpu"
]
;
then
for
use_mkldnn
in
${
use_mkldnn_list
[*]
}
;
do
# if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
# continue
# fi
for
threads
in
${
cpu_threads_list
[*]
}
;
do
for
batch_size
in
${
batch_size_list
[*]
}
;
do
_save_log_path
=
"
${
_log_path
}
/infer_cpu_usemkldnn_
${
use_mkldnn
}
_threads_
${
threads
}
_batchsize_
${
batch_size
}
.log"
...
...
@@ -137,9 +134,6 @@ function func_inference() {
if
[
${
precision
}
=
"True"
]
&&
[
${
use_trt
}
=
"False"
]
;
then
continue
fi
# if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
# continue
# fi
for
batch_size
in
${
batch_size_list
[*]
}
;
do
_save_log_path
=
"
${
_log_path
}
/infer_gpu_usetrt_
${
use_trt
}
_precision_
${
precision
}
_batchsize_
${
batch_size
}
.log"
set_infer_data
=
$(
func_set_params
"
${
image_dir_key
}
"
"
${
_img_dir
}
"
)
...
...
@@ -162,50 +156,22 @@ function func_inference() {
done
}
if
[[
${
MODE
}
=
"whole_infer"
]]
||
[[
${
MODE
}
=
"klquant_whole_infer"
]]
;
then
IFS
=
"|"
infer_export_flag
=(
${
infer_export_flag
}
)
if
[
${
infer_export_flag
}
!=
"null"
]
&&
[
${
infer_export_flag
}
!=
"False"
]
;
then
rm
-rf
${
infer_model_dir_list
/..\//
}
export_cmd
=
"
${
python
}
${
norm_export
}
-o Global.pretrained_model=
${
model_name
}
_pretrained -o Global.save_inference_dir=
${
infer_model_dir_list
/..\//
}
"
eval
$export_cmd
fi
fi
if
[[
${
MODE
}
=
"whole_infer"
]]
;
then
GPUID
=
$3
if
[
${#
GPUID
}
-le
0
]
;
then
env
=
" "
else
env
=
"export CUDA_VISIBLE_DEVICES=
${
GPUID
}
"
fi
# set CUDA_VISIBLE_DEVICES
eval
$env
export
Count
=
0
cd
deploy
for
infer_model
in
${
infer_model_dir_list
[*]
}
;
do
#run inference
is_quant
=
${
infer_quant_flag
[Count]
}
echo
"is_quant:
${
is_quant
}
"
func_inference
"
${
python
}
"
"
${
inference_py
}
"
"
${
infer_model
}
"
"../
${
LOG_PATH
}
"
"
${
infer_img_dir
}
"
${
is_quant
}
Count
=
$((
$Count
+
1
))
done
cd
..
elif
[[
${
MODE
}
=
"klquant_whole_infer"
]]
;
then
# for kl_quant
if
[
${
kl_quant_cmd_value
}
!=
"null"
]
&&
[
${
kl_quant_cmd_value
}
!=
"False"
]
;
then
echo
"kl_quant"
command
=
"
${
python
}
${
kl_quant_cmd_value
}
"
echo
${
command
}
eval
$command
last_status
=
${
PIPESTATUS
[0]
}
status_check
$last_status
"
${
command
}
"
"
${
status_log
}
"
"
${
model_name
}
"
cd
inference
/quant_post_static_model
cd
${
infer_model_dir_list
}
/quant_post_static_model
ln
-s
__model__ inference.pdmodel
ln
-s
__params__ inference.pdiparams
cd
../../deploy
is_quant
=
True
func_inference
"
${
python
}
"
"
${
inference_py
}
"
"
${
infer_model_dir_list
}
/quant_post_static_model"
"../
${
LOG_PATH
}
"
"
${
infer_img_dir
}
"
${
is_quant
}
func_inference
"
${
python
}
"
"
${
inference_py
}
"
"
../
${
infer_model_dir_list
}
/quant_post_static_model"
"../
${
LOG_PATH
}
"
"
${
infer_img_dir
}
"
${
is_quant
}
cd
..
fi
else
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录