未验证 提交 2595af2b 编写于 作者: W Wei Shengyu 提交者: GitHub

Merge pull request #1742 from TingquanGao/deploy_v2

deploy_v2
from functools import partial
import six
import math
import random
import cv2
import numpy as np
import importlib
from PIL import Image
from utils import logger
class PreProcesser(object):
def __init__(self, config):
"""Image PreProcesser
Args:
config (list): A list consisting of Dict object that describe an image processer operator.
"""
super().__init__()
self.ops = self.create_ops(config)
def create_ops(self, config):
if not isinstance(config, list):
msg = "The preprocess config should be a list consisting of Dict object."
logger.error(msg)
raise Exception(msg)
mod = importlib.import_module(__name__)
ops = []
for op_config in config:
name = list(op_config)[0]
param = {} if op_config[name] is None else op_config[name]
op = getattr(mod, name)(**param)
ops.append(op)
return ops
def __call__(self, img, img_info=None):
if img_info:
for op in self.ops:
img, img_info = op(img, img_info)
return img, img_info
else:
for op in self.ops:
img = op(img)
return img
class DecodeImage(object):
""" decode image """
def __init__(self, to_rgb=True, to_np=False, channel_first=False):
self.to_rgb = to_rgb
self.to_np = to_np # to numpy
self.channel_first = channel_first # only enabled when to_np is True
def __call__(self, img, img_info=None):
if six.PY2:
assert type(img) is str and len(
img) > 0, "invalid input 'img' in DecodeImage"
else:
assert type(img) is bytes and len(
img) > 0, "invalid input 'img' in DecodeImage"
data = np.frombuffer(img, dtype='uint8')
img = cv2.imdecode(data, 1)
if self.to_rgb:
assert img.shape[2] == 3, 'invalid shape of image[%s]' % (
img.shape)
img = img[:, :, ::-1]
if self.channel_first:
img = img.transpose((2, 0, 1))
if img_info:
img_info["im_shape"] = np.array(img.shape[:2], dtype=np.float32)
img_info["scale_factor"] = np.array([1., 1.], dtype=np.float32)
return img, img_info
else:
return img
class UnifiedResize(object):
def __init__(self, interpolation=None, backend="cv2"):
_cv2_interp_from_str = {
'nearest': cv2.INTER_NEAREST,
'bilinear': cv2.INTER_LINEAR,
'area': cv2.INTER_AREA,
'bicubic': cv2.INTER_CUBIC,
'lanczos': cv2.INTER_LANCZOS4
}
_pil_interp_from_str = {
'nearest': Image.NEAREST,
'bilinear': Image.BILINEAR,
'bicubic': Image.BICUBIC,
'box': Image.BOX,
'lanczos': Image.LANCZOS,
'hamming': Image.HAMMING
}
def _pil_resize(src, size, resample):
pil_img = Image.fromarray(src)
pil_img = pil_img.resize(size, resample)
return np.asarray(pil_img)
if backend.lower() == "cv2":
if isinstance(interpolation, str):
interpolation = _cv2_interp_from_str[interpolation.lower()]
# compatible with opencv < version 4.4.0
elif interpolation is None:
interpolation = cv2.INTER_LINEAR
self.resize_func = partial(cv2.resize, interpolation=interpolation)
elif backend.lower() == "pil":
if isinstance(interpolation, str):
interpolation = _pil_interp_from_str[interpolation.lower()]
self.resize_func = partial(_pil_resize, resample=interpolation)
else:
logger.warning(
f"The backend of Resize only support \"cv2\" or \"PIL\". \"f{backend}\" is unavailable. Use \"cv2\" instead."
)
self.resize_func = cv2.resize
def __call__(self, src, size):
return self.resize_func(src, size)
class ResizeImage(object):
""" resize image """
def __init__(self,
size=None,
resize_short=None,
interpolation=None,
backend="cv2"):
if resize_short is not None and resize_short > 0:
self.resize_short = resize_short
self.w = None
self.h = None
elif size is not None:
self.resize_short = None
self.w = size if type(size) is int else size[0]
self.h = size if type(size) is int else size[1]
else:
raise Exception("invalid params for ReisizeImage for '\
'both 'size' and 'resize_short' are None")
self._resize_func = UnifiedResize(
interpolation=interpolation, backend=backend)
def __call__(self, img, img_info=None):
img_h, img_w = img.shape[:2]
if self.resize_short is not None:
percent = float(self.resize_short) / min(img_w, img_h)
w = int(round(img_w * percent))
h = int(round(img_h * percent))
else:
w = self.w
h = self.h
img = self._resize_func(img, (w, h))
if img_info:
img_info["input_shape"] = img.shape[:2]
img_info["scale_factor"] = np.array(
[img.shape[0] / img_h, img.shape[1] / img_w]).astype("float32")
return img, img_info
else:
return img
class CropImage(object):
""" crop image """
def __init__(self, size):
if type(size) is int:
self.size = (size, size)
else:
self.size = size # (h, w)
def __call__(self, img, img_info=None):
w, h = self.size
img_h, img_w = img.shape[:2]
if img_h < h or img_w < w:
raise Exception(
f"The size({h}, {w}) of CropImage must be greater than size({img_h}, {img_w}) of image. Please check image original size and size of ResizeImage if used."
)
w_start = (img_w - w) // 2
h_start = (img_h - h) // 2
w_end = w_start + w
h_end = h_start + h
img = img[h_start:h_end, w_start:w_end, :]
if img_info:
img_info["input_shape"] = img.shape[:2]
# TODO(gaotingquan): im_shape is needed to update?
img_info["im_shape"] = np.array(img.shape[:2], dtype=np.float32)
return img, img_info
else:
return img
class NormalizeImage(object):
""" normalize image such as substract mean, divide std
"""
def __init__(self,
scale=None,
mean=None,
std=None,
order='chw',
output_fp16=False,
channel_num=3):
if isinstance(scale, str):
scale = eval(scale)
assert channel_num in [
3, 4
], "channel number of input image should be set to 3 or 4."
self.channel_num = channel_num
self.output_dtype = 'float16' if output_fp16 else 'float32'
self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
self.order = order
mean = mean if mean is not None else [0.485, 0.456, 0.406]
std = std if std is not None else [0.229, 0.224, 0.225]
shape = (3, 1, 1) if self.order == 'chw' else (1, 1, 3)
self.mean = np.array(mean).reshape(shape).astype('float32')
self.std = np.array(std).reshape(shape).astype('float32')
def __call__(self, img, img_info=None):
if isinstance(img, Image.Image):
img = np.array(img)
assert isinstance(img,
np.ndarray), "invalid input 'img' in NormalizeImage"
img = (img.astype('float32') * self.scale - self.mean) / self.std
if self.channel_num == 4:
img_h = img.shape[1] if self.order == 'chw' else img.shape[0]
img_w = img.shape[2] if self.order == 'chw' else img.shape[1]
pad_zeros = np.zeros(
(1, img_h, img_w)) if self.order == 'chw' else np.zeros(
(img_h, img_w, 1))
img = (np.concatenate(
(img, pad_zeros), axis=0)
if self.order == 'chw' else np.concatenate(
(img, pad_zeros), axis=2))
img = img.astype(self.output_dtype)
if img_info:
return img, img_info
else:
return img
class ToCHWImage(object):
""" convert hwc image to chw image
"""
def __init__(self):
pass
def __call__(self, img, img_info=None):
if isinstance(img, Image.Image):
img = np.array(img)
img = img.transpose((2, 0, 1))
if img_info:
return img, img_info
else:
return img
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册