Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
20848e6a
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
1 年多 前同步成功
通知
116
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
20848e6a
编写于
12月 05, 2022
作者:
K
kuizhiqing
提交者:
Wei Shengyu
12月 07, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
adapt roll op for swin transformer
上级
4f01e3bc
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
46 addition
and
2 deletion
+46
-2
ppcls/arch/backbone/legendary_models/swin_transformer.py
ppcls/arch/backbone/legendary_models/swin_transformer.py
+46
-2
未找到文件。
ppcls/arch/backbone/legendary_models/swin_transformer.py
浏览文件 @
20848e6a
...
...
@@ -42,6 +42,50 @@ MODEL_URLS = {
__all__
=
list
(
MODEL_URLS
.
keys
())
class
RollWithIndexSelect
(
paddle
.
autograd
.
PyLayer
):
@
staticmethod
def
forward
(
ctx
,
input1
,
index_fp
,
index_bp
):
N
,
H
,
W
,
C
=
input1
.
shape
ctx
.
input1
=
input1
ctx
.
index_bp
=
index_bp
result
=
input1
.
reshape
([
N
,
H
*
W
,
C
]).
index_select
(
index_fp
,
1
).
reshape
([
N
,
H
,
W
,
C
])
return
result
@
staticmethod
def
backward
(
ctx
,
grad
):
input1
=
ctx
.
input1
N
,
H
,
W
,
C
=
input1
.
shape
index_bp
=
ctx
.
index_bp
grad_input
=
grad
.
reshape
([
N
,
H
*
W
,
C
]).
index_select
(
index_bp
,
1
).
reshape
([
N
,
H
,
W
,
C
])
return
grad_input
,
None
,
None
roll_with_index_select
=
RollWithIndexSelect
.
apply
def
get_roll_index
(
H
,
W
,
shifts
,
place
):
index
=
paddle
.
arange
(
0
,
H
*
W
,
dtype
=
'int64'
).
reshape
([
H
,
W
])
# cpu
index_fp
=
paddle
.
roll
(
index
,
shifts
=
shifts
,
axis
=
(
0
,
1
)).
reshape
([
-
1
])
# cpu
index_bp
=
{
i
:
idx
for
idx
,
i
in
enumerate
(
index_fp
.
numpy
().
tolist
())}
index_bp
=
[
index_bp
[
i
]
for
i
in
range
(
H
*
W
)]
index_fp
=
paddle
.
to_tensor
(
index_fp
,
place
=
place
)
index_bp
=
paddle
.
to_tensor
(
index_fp
,
dtype
=
'int64'
,
place
=
place
)
return
[
index_fp
,
index_bp
]
class
NpuRollWithIndexSelect
():
def
__init__
(
self
):
self
.
index_dict
=
{}
def
__call__
(
self
,
x
,
shifts
,
axis
):
assert
x
.
dim
()
==
4
assert
len
(
shifts
)
==
2
assert
len
(
axis
)
==
2
N
,
H
,
W
,
C
=
x
.
shape
key
=
(
H
,
W
,
shifts
,
axis
)
if
key
not
in
self
.
index_dict
:
self
.
index_dict
[
key
]
=
get_roll_index
(
H
,
W
,
shifts
,
x
.
place
)
index_fp
,
index_bp
=
self
.
index_dict
[
key
]
return
roll_with_index_select
(
x
,
index_fp
,
index_bp
)
roll
=
NpuRollWithIndexSelect
()
class
Mlp
(
nn
.
Layer
):
def
__init__
(
self
,
...
...
@@ -356,7 +400,7 @@ class SwinTransformerBlock(nn.Layer):
# cyclic shift
if
self
.
shift_size
>
0
:
shifted_x
=
paddle
.
roll
(
shifted_x
=
roll
(
x
,
shifts
=
(
-
self
.
shift_size
,
-
self
.
shift_size
),
axis
=
(
1
,
2
))
else
:
shifted_x
=
x
...
...
@@ -380,7 +424,7 @@ class SwinTransformerBlock(nn.Layer):
# reverse cyclic shift
if
self
.
shift_size
>
0
:
x
=
paddle
.
roll
(
x
=
roll
(
shifted_x
,
shifts
=
(
self
.
shift_size
,
self
.
shift_size
),
axis
=
(
1
,
2
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录