提交 20848e6a 编写于 作者: K kuizhiqing 提交者: Wei Shengyu

adapt roll op for swin transformer

上级 4f01e3bc
......@@ -42,6 +42,50 @@ MODEL_URLS = {
__all__ = list(MODEL_URLS.keys())
class RollWithIndexSelect(paddle.autograd.PyLayer):
@staticmethod
def forward(ctx, input1, index_fp, index_bp):
N, H, W, C = input1.shape
ctx.input1 = input1
ctx.index_bp = index_bp
result = input1.reshape([N, H * W, C]).index_select(index_fp, 1).reshape([N, H, W, C])
return result
@staticmethod
def backward(ctx, grad):
input1 = ctx.input1
N, H, W, C = input1.shape
index_bp = ctx.index_bp
grad_input = grad.reshape([N, H * W, C]).index_select(index_bp, 1).reshape([N, H, W, C])
return grad_input, None, None
roll_with_index_select = RollWithIndexSelect.apply
def get_roll_index(H, W, shifts, place):
index = paddle.arange(0, H * W, dtype='int64').reshape([H, W]) # cpu
index_fp = paddle.roll(index, shifts=shifts, axis=(0, 1)).reshape([-1]) # cpu
index_bp = {i:idx for idx, i in enumerate(index_fp.numpy().tolist())}
index_bp = [index_bp[i] for i in range(H * W)]
index_fp = paddle.to_tensor(index_fp, place=place)
index_bp = paddle.to_tensor(index_fp, dtype='int64', place=place)
return [index_fp, index_bp]
class NpuRollWithIndexSelect():
def __init__(self):
self.index_dict = {}
def __call__(self, x, shifts, axis):
assert x.dim() == 4
assert len(shifts) == 2
assert len(axis) == 2
N, H, W, C = x.shape
key = (H, W, shifts, axis)
if key not in self.index_dict:
self.index_dict[key] = get_roll_index(H, W, shifts, x.place)
index_fp, index_bp = self.index_dict[key]
return roll_with_index_select(x, index_fp, index_bp)
roll = NpuRollWithIndexSelect()
class Mlp(nn.Layer):
def __init__(self,
......@@ -356,7 +400,7 @@ class SwinTransformerBlock(nn.Layer):
# cyclic shift
if self.shift_size > 0:
shifted_x = paddle.roll(
shifted_x = roll(
x, shifts=(-self.shift_size, -self.shift_size), axis=(1, 2))
else:
shifted_x = x
......@@ -380,7 +424,7 @@ class SwinTransformerBlock(nn.Layer):
# reverse cyclic shift
if self.shift_size > 0:
x = paddle.roll(
x = roll(
shifted_x,
shifts=(self.shift_size, self.shift_size),
axis=(1, 2))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册