提交 1e696ac2 编写于 作者: G gaotingquan 提交者: Tingquan Gao

fix: remove unnecessary register_hook() call & pre-commit

上级 a86c4b29
...@@ -217,7 +217,8 @@ class ESNet(TheseusLayer): ...@@ -217,7 +217,8 @@ class ESNet(TheseusLayer):
class_num=1000, class_num=1000,
scale=1.0, scale=1.0,
dropout_prob=0.2, dropout_prob=0.2,
class_expand=1280): class_expand=1280,
return_patterns=None):
super().__init__() super().__init__()
self.scale = scale self.scale = scale
self.class_num = class_num self.class_num = class_num
...@@ -268,6 +269,9 @@ class ESNet(TheseusLayer): ...@@ -268,6 +269,9 @@ class ESNet(TheseusLayer):
self.flatten = nn.Flatten(start_axis=1, stop_axis=-1) self.flatten = nn.Flatten(start_axis=1, stop_axis=-1)
self.fc = Linear(self.class_expand, self.class_num) self.fc = Linear(self.class_expand, self.class_num)
if return_patterns is not None:
self.update_res(return_patterns)
def forward(self, x): def forward(self, x):
x = self.conv1(x) x = self.conv1(x)
x = self.max_pool(x) x = self.max_pool(x)
......
...@@ -244,7 +244,7 @@ class HighResolutionModule(TheseusLayer): ...@@ -244,7 +244,7 @@ class HighResolutionModule(TheseusLayer):
for i in range(len(num_filters)): for i in range(len(num_filters)):
self.basic_block_list.append( self.basic_block_list.append(
nn.Sequential(*[ nn.Sequential(* [
BasicBlock( BasicBlock(
num_channels=num_filters[i], num_channels=num_filters[i],
num_filters=num_filters[i], num_filters=num_filters[i],
...@@ -367,7 +367,11 @@ class HRNet(TheseusLayer): ...@@ -367,7 +367,11 @@ class HRNet(TheseusLayer):
model: nn.Layer. Specific HRNet model depends on args. model: nn.Layer. Specific HRNet model depends on args.
""" """
def __init__(self, width=18, has_se=False, class_num=1000, return_patterns=None): def __init__(self,
width=18,
has_se=False,
class_num=1000,
return_patterns=None):
super().__init__() super().__init__()
self.width = width self.width = width
...@@ -394,7 +398,7 @@ class HRNet(TheseusLayer): ...@@ -394,7 +398,7 @@ class HRNet(TheseusLayer):
stride=2, stride=2,
act="relu") act="relu")
self.layer1 = nn.Sequential(*[ self.layer1 = nn.Sequential(* [
BottleneckBlock( BottleneckBlock(
num_channels=64 if i == 0 else 256, num_channels=64 if i == 0 else 256,
num_filters=64, num_filters=64,
...@@ -458,7 +462,6 @@ class HRNet(TheseusLayer): ...@@ -458,7 +462,6 @@ class HRNet(TheseusLayer):
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv))) weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)))
if return_patterns is not None: if return_patterns is not None:
self.update_res(return_patterns) self.update_res(return_patterns)
self.register_forward_post_hook(self._return_dict_hook)
def forward(self, x): def forward(self, x):
x = self.conv_layer1_1(x) x = self.conv_layer1_1(x)
......
...@@ -498,7 +498,6 @@ class Inception_V3(TheseusLayer): ...@@ -498,7 +498,6 @@ class Inception_V3(TheseusLayer):
bias_attr=ParamAttr()) bias_attr=ParamAttr())
if return_patterns is not None: if return_patterns is not None:
self.update_res(return_patterns) self.update_res(return_patterns)
self.register_forward_post_hook(self._return_dict_hook)
def forward(self, x): def forward(self, x):
x = self.inception_stem(x) x = self.inception_stem(x)
......
...@@ -128,7 +128,7 @@ class MobileNet(TheseusLayer): ...@@ -128,7 +128,7 @@ class MobileNet(TheseusLayer):
[int(512 * scale), 512, 1024, 512, 2], [int(512 * scale), 512, 1024, 512, 2],
[int(1024 * scale), 1024, 1024, 1024, 1]] [int(1024 * scale), 1024, 1024, 1024, 1]]
self.blocks = nn.Sequential(*[ self.blocks = nn.Sequential(* [
DepthwiseSeparable( DepthwiseSeparable(
num_channels=params[0], num_channels=params[0],
num_filters1=params[1], num_filters1=params[1],
...@@ -147,7 +147,6 @@ class MobileNet(TheseusLayer): ...@@ -147,7 +147,6 @@ class MobileNet(TheseusLayer):
weight_attr=ParamAttr(initializer=KaimingNormal())) weight_attr=ParamAttr(initializer=KaimingNormal()))
if return_patterns is not None: if return_patterns is not None:
self.update_res(return_patterns) self.update_res(return_patterns)
self.register_forward_post_hook(self._return_dict_hook)
def forward(self, x): def forward(self, x):
x = self.conv(x) x = self.conv(x)
......
...@@ -202,7 +202,6 @@ class MobileNetV3(TheseusLayer): ...@@ -202,7 +202,6 @@ class MobileNetV3(TheseusLayer):
self.fc = Linear(self.class_expand, class_num) self.fc = Linear(self.class_expand, class_num)
if return_patterns is not None: if return_patterns is not None:
self.update_res(return_patterns) self.update_res(return_patterns)
self.register_forward_post_hook(self._return_dict_hook)
def forward(self, x): def forward(self, x):
x = self.conv(x) x = self.conv(x)
......
...@@ -171,7 +171,8 @@ class PPLCNet(TheseusLayer): ...@@ -171,7 +171,8 @@ class PPLCNet(TheseusLayer):
scale=1.0, scale=1.0,
class_num=1000, class_num=1000,
dropout_prob=0.2, dropout_prob=0.2,
class_expand=1280): class_expand=1280,
return_patterns=None):
super().__init__() super().__init__()
self.scale = scale self.scale = scale
self.class_expand = class_expand self.class_expand = class_expand
...@@ -182,7 +183,7 @@ class PPLCNet(TheseusLayer): ...@@ -182,7 +183,7 @@ class PPLCNet(TheseusLayer):
num_filters=make_divisible(16 * scale), num_filters=make_divisible(16 * scale),
stride=2) stride=2)
self.blocks2 = nn.Sequential(*[ self.blocks2 = nn.Sequential(* [
DepthwiseSeparable( DepthwiseSeparable(
num_channels=make_divisible(in_c * scale), num_channels=make_divisible(in_c * scale),
num_filters=make_divisible(out_c * scale), num_filters=make_divisible(out_c * scale),
...@@ -192,7 +193,7 @@ class PPLCNet(TheseusLayer): ...@@ -192,7 +193,7 @@ class PPLCNet(TheseusLayer):
for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks2"]) for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks2"])
]) ])
self.blocks3 = nn.Sequential(*[ self.blocks3 = nn.Sequential(* [
DepthwiseSeparable( DepthwiseSeparable(
num_channels=make_divisible(in_c * scale), num_channels=make_divisible(in_c * scale),
num_filters=make_divisible(out_c * scale), num_filters=make_divisible(out_c * scale),
...@@ -202,7 +203,7 @@ class PPLCNet(TheseusLayer): ...@@ -202,7 +203,7 @@ class PPLCNet(TheseusLayer):
for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks3"]) for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks3"])
]) ])
self.blocks4 = nn.Sequential(*[ self.blocks4 = nn.Sequential(* [
DepthwiseSeparable( DepthwiseSeparable(
num_channels=make_divisible(in_c * scale), num_channels=make_divisible(in_c * scale),
num_filters=make_divisible(out_c * scale), num_filters=make_divisible(out_c * scale),
...@@ -212,7 +213,7 @@ class PPLCNet(TheseusLayer): ...@@ -212,7 +213,7 @@ class PPLCNet(TheseusLayer):
for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks4"]) for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks4"])
]) ])
self.blocks5 = nn.Sequential(*[ self.blocks5 = nn.Sequential(* [
DepthwiseSeparable( DepthwiseSeparable(
num_channels=make_divisible(in_c * scale), num_channels=make_divisible(in_c * scale),
num_filters=make_divisible(out_c * scale), num_filters=make_divisible(out_c * scale),
...@@ -222,7 +223,7 @@ class PPLCNet(TheseusLayer): ...@@ -222,7 +223,7 @@ class PPLCNet(TheseusLayer):
for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks5"]) for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks5"])
]) ])
self.blocks6 = nn.Sequential(*[ self.blocks6 = nn.Sequential(* [
DepthwiseSeparable( DepthwiseSeparable(
num_channels=make_divisible(in_c * scale), num_channels=make_divisible(in_c * scale),
num_filters=make_divisible(out_c * scale), num_filters=make_divisible(out_c * scale),
...@@ -248,6 +249,9 @@ class PPLCNet(TheseusLayer): ...@@ -248,6 +249,9 @@ class PPLCNet(TheseusLayer):
self.fc = Linear(self.class_expand, class_num) self.fc = Linear(self.class_expand, class_num)
if return_patterns is not None:
self.update_res(return_patterns)
def forward(self, x): def forward(self, x):
x = self.conv1(x) x = self.conv1(x)
......
...@@ -340,7 +340,6 @@ class ResNet(TheseusLayer): ...@@ -340,7 +340,6 @@ class ResNet(TheseusLayer):
self.data_format = data_format self.data_format = data_format
if return_patterns is not None: if return_patterns is not None:
self.update_res(return_patterns) self.update_res(return_patterns)
self.register_forward_post_hook(self._return_dict_hook)
def forward(self, x): def forward(self, x):
with paddle.static.amp.fp16_guard(): with paddle.static.amp.fp16_guard():
......
...@@ -111,7 +111,11 @@ class VGGNet(TheseusLayer): ...@@ -111,7 +111,11 @@ class VGGNet(TheseusLayer):
model: nn.Layer. Specific VGG model depends on args. model: nn.Layer. Specific VGG model depends on args.
""" """
def __init__(self, config, stop_grad_layers=0, class_num=1000, return_patterns=None): def __init__(self,
config,
stop_grad_layers=0,
class_num=1000,
return_patterns=None):
super().__init__() super().__init__()
self.stop_grad_layers = stop_grad_layers self.stop_grad_layers = stop_grad_layers
...@@ -139,7 +143,6 @@ class VGGNet(TheseusLayer): ...@@ -139,7 +143,6 @@ class VGGNet(TheseusLayer):
self.fc3 = Linear(4096, class_num) self.fc3 = Linear(4096, class_num)
if return_patterns is not None: if return_patterns is not None:
self.update_res(return_patterns) self.update_res(return_patterns)
self.register_forward_post_hook(self._return_dict_hook)
def forward(self, inputs): def forward(self, inputs):
x = self.conv_block_1(inputs) x = self.conv_block_1(inputs)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册