Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
1bbe4b5e
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
1 年多 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1bbe4b5e
编写于
7月 14, 2022
作者:
C
cuicheng01
提交者:
GitHub
7月 14, 2022
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1885 from flytocc/ConvNeXt
ConvNext & EMA & gradient accumulation
上级
13a29e1a
3248cc58
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
614 addition
and
79 deletion
+614
-79
ppcls/arch/backbone/__init__.py
ppcls/arch/backbone/__init__.py
+1
-0
ppcls/arch/backbone/model_zoo/convnext.py
ppcls/arch/backbone/model_zoo/convnext.py
+240
-0
ppcls/configs/ImageNet/ConvNeXt/ConvNeXt_tiny.yaml
ppcls/configs/ImageNet/ConvNeXt/ConvNeXt_tiny.yaml
+170
-0
ppcls/data/preprocess/ops/operators.py
ppcls/data/preprocess/ops/operators.py
+43
-17
ppcls/engine/engine.py
ppcls/engine/engine.py
+47
-2
ppcls/engine/train/train.py
ppcls/engine/train/train.py
+22
-14
ppcls/engine/train/utils.py
ppcls/engine/train/utils.py
+2
-2
ppcls/utils/ema.py
ppcls/utils/ema.py
+22
-43
ppcls/utils/save_load.py
ppcls/utils/save_load.py
+13
-1
test_tipc/config/ConvNeXt/ConvNeXt_tiny_train_infer_python.txt
...tipc/config/ConvNeXt/ConvNeXt_tiny_train_infer_python.txt
+54
-0
未找到文件。
ppcls/arch/backbone/__init__.py
浏览文件 @
1bbe4b5e
...
...
@@ -67,6 +67,7 @@ from ppcls.arch.backbone.model_zoo.pvt_v2 import PVT_V2_B0, PVT_V2_B1, PVT_V2_B2
from
ppcls.arch.backbone.model_zoo.mobilevit
import
MobileViT_XXS
,
MobileViT_XS
,
MobileViT_S
from
ppcls.arch.backbone.model_zoo.repvgg
import
RepVGG_A0
,
RepVGG_A1
,
RepVGG_A2
,
RepVGG_B0
,
RepVGG_B1
,
RepVGG_B2
,
RepVGG_B1g2
,
RepVGG_B1g4
,
RepVGG_B2g4
,
RepVGG_B3g4
from
ppcls.arch.backbone.model_zoo.van
import
VAN_tiny
from
ppcls.arch.backbone.model_zoo.convnext
import
ConvNeXt_tiny
from
ppcls.arch.backbone.variant_models.resnet_variant
import
ResNet50_last_stage_stride1
from
ppcls.arch.backbone.variant_models.vgg_variant
import
VGG19Sigmoid
from
ppcls.arch.backbone.variant_models.pp_lcnet_variant
import
PPLCNet_x2_5_Tanh
...
...
ppcls/arch/backbone/model_zoo/convnext.py
0 → 100644
浏览文件 @
1bbe4b5e
# MIT License
#
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# Code was heavily based on https://github.com/facebookresearch/ConvNeXt
import
paddle
import
paddle.nn
as
nn
from
paddle.nn.initializer
import
TruncatedNormal
,
Constant
from
ppcls.utils.save_load
import
load_dygraph_pretrain
,
load_dygraph_pretrain_from_url
MODEL_URLS
=
{
"ConvNeXt_tiny"
:
""
,
# TODO
}
__all__
=
list
(
MODEL_URLS
.
keys
())
trunc_normal_
=
TruncatedNormal
(
std
=
.
02
)
zeros_
=
Constant
(
value
=
0.
)
ones_
=
Constant
(
value
=
1.
)
def
drop_path
(
x
,
drop_prob
=
0.
,
training
=
False
):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
"""
if
drop_prob
==
0.
or
not
training
:
return
x
keep_prob
=
paddle
.
to_tensor
(
1
-
drop_prob
)
shape
=
(
paddle
.
shape
(
x
)[
0
],
)
+
(
1
,
)
*
(
x
.
ndim
-
1
)
random_tensor
=
keep_prob
+
paddle
.
rand
(
shape
,
dtype
=
x
.
dtype
)
random_tensor
=
paddle
.
floor
(
random_tensor
)
# binarize
output
=
x
.
divide
(
keep_prob
)
*
random_tensor
return
output
class
DropPath
(
nn
.
Layer
):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def
__init__
(
self
,
drop_prob
=
None
):
super
(
DropPath
,
self
).
__init__
()
self
.
drop_prob
=
drop_prob
def
forward
(
self
,
x
):
return
drop_path
(
x
,
self
.
drop_prob
,
self
.
training
)
class
ChannelsFirstLayerNorm
(
nn
.
Layer
):
r
""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def
__init__
(
self
,
normalized_shape
,
epsilon
=
1e-5
):
super
().
__init__
()
self
.
weight
=
self
.
create_parameter
(
shape
=
[
normalized_shape
],
default_initializer
=
ones_
)
self
.
bias
=
self
.
create_parameter
(
shape
=
[
normalized_shape
],
default_initializer
=
zeros_
)
self
.
epsilon
=
epsilon
self
.
normalized_shape
=
[
normalized_shape
]
def
forward
(
self
,
x
):
u
=
x
.
mean
(
1
,
keepdim
=
True
)
s
=
(
x
-
u
).
pow
(
2
).
mean
(
1
,
keepdim
=
True
)
x
=
(
x
-
u
)
/
paddle
.
sqrt
(
s
+
self
.
epsilon
)
x
=
self
.
weight
[:,
None
,
None
]
*
x
+
self
.
bias
[:,
None
,
None
]
return
x
class
Block
(
nn
.
Layer
):
r
""" ConvNeXt Block. There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
We use (2) as we find it slightly faster in PyTorch
Args:
dim (int): Number of input channels.
drop_path (float): Stochastic depth rate. Default: 0.0
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
"""
def
__init__
(
self
,
dim
,
drop_path
=
0.
,
layer_scale_init_value
=
1e-6
):
super
().
__init__
()
self
.
dwconv
=
nn
.
Conv2D
(
dim
,
dim
,
7
,
padding
=
3
,
groups
=
dim
)
# depthwise conv
self
.
norm
=
nn
.
LayerNorm
(
dim
,
epsilon
=
1e-6
)
# pointwise/1x1 convs, implemented with linear layers
self
.
pwconv1
=
nn
.
Linear
(
dim
,
4
*
dim
)
self
.
act
=
nn
.
GELU
()
self
.
pwconv2
=
nn
.
Linear
(
4
*
dim
,
dim
)
if
layer_scale_init_value
>
0
:
self
.
gamma
=
self
.
create_parameter
(
shape
=
[
dim
],
default_initializer
=
Constant
(
value
=
layer_scale_init_value
))
else
:
self
.
gamma
=
None
self
.
drop_path
=
DropPath
(
drop_path
)
if
drop_path
>
0.
else
nn
.
Identity
()
def
forward
(
self
,
x
):
input
=
x
x
=
self
.
dwconv
(
x
)
x
=
x
.
transpose
([
0
,
2
,
3
,
1
])
# (N, C, H, W) -> (N, H, W, C)
x
=
self
.
norm
(
x
)
x
=
self
.
pwconv1
(
x
)
x
=
self
.
act
(
x
)
x
=
self
.
pwconv2
(
x
)
if
self
.
gamma
is
not
None
:
x
=
self
.
gamma
*
x
x
=
x
.
transpose
([
0
,
3
,
1
,
2
])
# (N, H, W, C) -> (N, C, H, W)
x
=
input
+
self
.
drop_path
(
x
)
return
x
class
ConvNeXt
(
nn
.
Layer
):
r
""" ConvNeXt
A PyTorch impl of : `A ConvNet for the 2020s` -
https://arxiv.org/pdf/2201.03545.pdf
Args:
in_chans (int): Number of input image channels. Default: 3
class_num (int): Number of classes for classification head. Default: 1000
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
drop_path_rate (float): Stochastic depth rate. Default: 0.
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
"""
def
__init__
(
self
,
in_chans
=
3
,
class_num
=
1000
,
depths
=
[
3
,
3
,
9
,
3
],
dims
=
[
96
,
192
,
384
,
768
],
drop_path_rate
=
0.
,
layer_scale_init_value
=
1e-6
,
head_init_scale
=
1.
):
super
().
__init__
()
# stem and 3 intermediate downsampling conv layers
self
.
downsample_layers
=
nn
.
LayerList
()
stem
=
nn
.
Sequential
(
nn
.
Conv2D
(
in_chans
,
dims
[
0
],
4
,
stride
=
4
),
ChannelsFirstLayerNorm
(
dims
[
0
],
epsilon
=
1e-6
))
self
.
downsample_layers
.
append
(
stem
)
for
i
in
range
(
3
):
downsample_layer
=
nn
.
Sequential
(
ChannelsFirstLayerNorm
(
dims
[
i
],
epsilon
=
1e-6
),
nn
.
Conv2D
(
dims
[
i
],
dims
[
i
+
1
],
2
,
stride
=
2
),
)
self
.
downsample_layers
.
append
(
downsample_layer
)
# 4 feature resolution stages, each consisting of multiple residual blocks
self
.
stages
=
nn
.
LayerList
()
dp_rates
=
[
x
.
item
()
for
x
in
paddle
.
linspace
(
0
,
drop_path_rate
,
sum
(
depths
))
]
cur
=
0
for
i
in
range
(
4
):
stage
=
nn
.
Sequential
(
*
[
Block
(
dim
=
dims
[
i
],
drop_path
=
dp_rates
[
cur
+
j
],
layer_scale_init_value
=
layer_scale_init_value
)
for
j
in
range
(
depths
[
i
])
])
self
.
stages
.
append
(
stage
)
cur
+=
depths
[
i
]
self
.
norm
=
nn
.
LayerNorm
(
dims
[
-
1
],
epsilon
=
1e-6
)
# final norm layer
self
.
head
=
nn
.
Linear
(
dims
[
-
1
],
class_num
)
self
.
apply
(
self
.
_init_weights
)
self
.
head
.
weight
.
set_value
(
self
.
head
.
weight
*
head_init_scale
)
self
.
head
.
bias
.
set_value
(
self
.
head
.
bias
*
head_init_scale
)
def
_init_weights
(
self
,
m
):
if
isinstance
(
m
,
(
nn
.
Conv2D
,
nn
.
Linear
)):
trunc_normal_
(
m
.
weight
)
if
m
.
bias
is
not
None
:
zeros_
(
m
.
bias
)
def
forward_features
(
self
,
x
):
for
i
in
range
(
4
):
x
=
self
.
downsample_layers
[
i
](
x
)
x
=
self
.
stages
[
i
](
x
)
# global average pooling, (N, C, H, W) -> (N, C)
return
self
.
norm
(
x
.
mean
([
-
2
,
-
1
]))
def
forward
(
self
,
x
):
x
=
self
.
forward_features
(
x
)
x
=
self
.
head
(
x
)
return
x
def
_load_pretrained
(
pretrained
,
model
,
model_url
,
use_ssld
=
False
):
if
pretrained
is
False
:
pass
elif
pretrained
is
True
:
load_dygraph_pretrain_from_url
(
model
,
model_url
,
use_ssld
=
use_ssld
)
elif
isinstance
(
pretrained
,
str
):
load_dygraph_pretrain
(
model
,
pretrained
)
else
:
raise
RuntimeError
(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def
ConvNeXt_tiny
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
ConvNeXt
(
depths
=
[
3
,
3
,
9
,
3
],
dims
=
[
96
,
192
,
384
,
768
],
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"ConvNeXt_tiny"
],
use_ssld
=
use_ssld
)
return
model
ppcls/configs/ImageNet/ConvNeXt/ConvNeXt_tiny.yaml
0 → 100644
浏览文件 @
1bbe4b5e
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
./output/
device
:
gpu
save_interval
:
1
eval_during_train
:
True
eval_interval
:
1
epochs
:
300
print_batch_step
:
10
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
224
,
224
]
save_inference_dir
:
./inference
# training model under @to_static
to_static
:
False
update_freq
:
4
# for 8 cards
# model ema
EMA
:
decay
:
0.9999
# model architecture
Arch
:
name
:
ConvNeXt_tiny
class_num
:
1000
drop_path_rate
:
0.1
layer_scale_init_value
:
1e-6
head_init_scale
:
1.0
# loss function config for traing/eval process
Loss
:
Train
:
-
CELoss
:
weight
:
1.0
epsilon
:
0.1
Eval
:
-
CELoss
:
weight
:
1.0
Optimizer
:
name
:
AdamW
beta1
:
0.9
beta2
:
0.999
epsilon
:
1e-8
weight_decay
:
0.05
one_dim_param_no_weight_decay
:
True
lr
:
# for 8 cards
name
:
Cosine
learning_rate
:
4e-3
# lr 4e-3 for total_batch_size 4096
eta_min
:
1e-6
warmup_epoch
:
20
warmup_start_lr
:
0
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/ILSVRC2012/
cls_label_path
:
./dataset/ILSVRC2012/train_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
RandCropImage
:
size
:
224
interpolation
:
bicubic
backend
:
pil
-
RandFlipImage
:
flip_code
:
1
-
TimmAutoAugment
:
config_str
:
rand-m9-mstd0.5-inc1
interpolation
:
bicubic
img_size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
RandomErasing
:
EPSILON
:
0.25
sl
:
0.02
sh
:
1.0/3.0
r1
:
0.3
attempt
:
10
use_log_aspect
:
True
mode
:
pixel
batch_transform_ops
:
-
OpSampler
:
MixupOperator
:
alpha
:
0.8
prob
:
0.5
CutmixOperator
:
alpha
:
1.0
prob
:
0.5
sampler
:
name
:
DistributedBatchSampler
batch_size
:
128
drop_last
:
True
shuffle
:
True
loader
:
num_workers
:
4
use_shared_memory
:
True
Eval
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/ILSVRC2012/
cls_label_path
:
./dataset/ILSVRC2012/val_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
256
interpolation
:
bicubic
backend
:
pil
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
128
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
4
use_shared_memory
:
True
Infer
:
infer_imgs
:
docs/images/inference_deployment/whl_demo.jpg
batch_size
:
10
transforms
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
256
interpolation
:
bicubic
backend
:
pil
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
PostProcess
:
name
:
Topk
topk
:
5
class_id_map_file
:
ppcls/utils/imagenet1k_label_list.txt
Metric
:
Eval
:
-
TopkAcc
:
topk
:
[
1
,
5
]
ppcls/data/preprocess/ops/operators.py
浏览文件 @
1bbe4b5e
...
...
@@ -18,6 +18,7 @@ from __future__ import print_function
from
__future__
import
unicode_literals
from
functools
import
partial
import
io
import
six
import
math
import
random
...
...
@@ -138,28 +139,53 @@ class OperatorParamError(ValueError):
class
DecodeImage
(
object
):
""" decode image """
def
__init__
(
self
,
to_rgb
=
True
,
to_np
=
False
,
channel_first
=
False
):
self
.
to_rgb
=
to_rgb
def
__init__
(
self
,
to_np
=
True
,
to_rgb
=
True
,
channel_first
=
False
,
backend
=
"cv2"
):
self
.
to_np
=
to_np
# to numpy
self
.
to_rgb
=
to_rgb
# only enabled when to_np is True
self
.
channel_first
=
channel_first
# only enabled when to_np is True
if
backend
.
lower
()
not
in
[
"cv2"
,
"pil"
]:
logger
.
warning
(
f
"The backend of DecodeImage only support
\"
cv2
\"
or
\"
PIL
\"
.
\"
f
{
backend
}
\"
is unavailable. Use
\"
cv2
\"
instead."
)
backend
=
"cv2"
self
.
backend
=
backend
.
lower
()
if
not
to_np
:
logger
.
warning
(
f
"
\"
to_rgb
\"
and
\"
channel_first
\"
are only enabled when to_np is True.
\"
to_np
\"
is now
{
to_np
}
."
)
def
__call__
(
self
,
img
):
if
not
isinstance
(
img
,
np
.
ndarray
):
if
six
.
PY2
:
assert
type
(
img
)
is
str
and
len
(
img
)
>
0
,
"invalid input 'img' in DecodeImage"
if
isinstance
(
img
,
Image
.
Image
):
assert
self
.
backend
==
"pil"
,
"invalid input 'img' in DecodeImage"
elif
isinstance
(
img
,
np
.
ndarray
):
assert
self
.
backend
==
"cv2"
,
"invalid input 'img' in DecodeImage"
elif
isinstance
(
img
,
bytes
):
if
self
.
backend
==
"pil"
:
data
=
io
.
BytesIO
(
img
)
img
=
Image
.
open
(
data
)
else
:
assert
type
(
img
)
is
bytes
and
len
(
img
)
>
0
,
"invalid input 'img' in DecodeImage"
data
=
np
.
frombuffer
(
img
,
dtype
=
'uint8'
)
img
=
cv2
.
imdecode
(
data
,
1
)
if
self
.
to_rgb
:
assert
img
.
shape
[
2
]
==
3
,
'invalid shape of image[%s]'
%
(
img
.
shape
)
img
=
img
[:,
:,
::
-
1
]
if
self
.
channel_first
:
img
=
img
.
transpose
((
2
,
0
,
1
))
data
=
np
.
frombuffer
(
img
,
dtype
=
"uint8"
)
img
=
cv2
.
imdecode
(
data
,
1
)
else
:
raise
ValueError
(
"invalid input 'img' in DecodeImage"
)
if
self
.
to_np
:
if
self
.
backend
==
"pil"
:
assert
img
.
mode
==
"RGB"
,
f
"invalid shape of image[
{
img
.
shape
}
]"
img
=
np
.
asarray
(
img
)[:,
:,
::
-
1
]
# BRG
if
self
.
to_rgb
:
assert
img
.
shape
[
2
]
==
3
,
f
"invalid shape of image[
{
img
.
shape
}
]"
img
=
img
[:,
:,
::
-
1
]
if
self
.
channel_first
:
img
=
img
.
transpose
((
2
,
0
,
1
))
return
img
...
...
ppcls/engine/engine.py
浏览文件 @
1bbe4b5e
...
...
@@ -34,6 +34,7 @@ from ppcls.arch import apply_to_static
from
ppcls.loss
import
build_loss
from
ppcls.metric
import
build_metrics
from
ppcls.optimizer
import
build_optimizer
from
ppcls.utils.ema
import
ExponentialMovingAverage
from
ppcls.utils.save_load
import
load_dygraph_pretrain
,
load_dygraph_pretrain_from_url
from
ppcls.utils.save_load
import
init_model
from
ppcls.utils
import
save_load
...
...
@@ -99,6 +100,9 @@ class Engine(object):
logger
.
info
(
'train with paddle {} and device {}'
.
format
(
paddle
.
__version__
,
self
.
device
))
# gradient accumulation
self
.
update_freq
=
self
.
config
[
"Global"
].
get
(
"update_freq"
,
1
)
if
"class_num"
in
config
[
"Global"
]:
global_class_num
=
config
[
"Global"
][
"class_num"
]
if
"class_num"
not
in
config
[
"Arch"
]:
...
...
@@ -203,7 +207,7 @@ class Engine(object):
if
self
.
mode
==
'train'
:
self
.
optimizer
,
self
.
lr_sch
=
build_optimizer
(
self
.
config
[
"Optimizer"
],
self
.
config
[
"Global"
][
"epochs"
],
len
(
self
.
train_dataloader
),
len
(
self
.
train_dataloader
)
//
self
.
update_freq
,
[
self
.
model
,
self
.
train_loss_func
])
# AMP training and evaluating
...
...
@@ -277,6 +281,12 @@ class Engine(object):
level
=
self
.
amp_level
,
save_dtype
=
'float32'
)
# build EMA model
self
.
ema
=
"EMA"
in
self
.
config
and
self
.
mode
==
"train"
if
self
.
ema
:
self
.
model_ema
=
ExponentialMovingAverage
(
self
.
model
,
self
.
config
[
'EMA'
].
get
(
"decay"
,
0.9999
))
# check the gpu num
world_size
=
dist
.
get_world_size
()
self
.
config
[
"Global"
][
"distributed"
]
=
world_size
!=
1
...
...
@@ -311,6 +321,10 @@ class Engine(object):
"metric"
:
-
1.0
,
"epoch"
:
0
,
}
ema_module
=
None
if
self
.
ema
:
best_metric_ema
=
0.0
ema_module
=
self
.
model_ema
.
module
# key:
# val: metrics list word
self
.
output_info
=
dict
()
...
...
@@ -325,12 +339,14 @@ class Engine(object):
if
self
.
config
.
Global
.
checkpoints
is
not
None
:
metric_info
=
init_model
(
self
.
config
.
Global
,
self
.
model
,
self
.
optimizer
,
self
.
train_loss_func
)
self
.
optimizer
,
self
.
train_loss_func
,
ema_module
)
if
metric_info
is
not
None
:
best_metric
.
update
(
metric_info
)
self
.
max_iter
=
len
(
self
.
train_dataloader
)
-
1
if
platform
.
system
(
)
==
"Windows"
else
len
(
self
.
train_dataloader
)
self
.
max_iter
=
self
.
max_iter
//
self
.
update_freq
*
self
.
update_freq
for
epoch_id
in
range
(
best_metric
[
"epoch"
]
+
1
,
self
.
config
[
"Global"
][
"epochs"
]
+
1
):
...
...
@@ -361,6 +377,7 @@ class Engine(object):
self
.
optimizer
,
best_metric
,
self
.
output_dir
,
ema
=
ema_module
,
model_name
=
self
.
config
[
"Arch"
][
"name"
],
prefix
=
"best_model"
,
loss
=
self
.
train_loss_func
,
...
...
@@ -375,6 +392,32 @@ class Engine(object):
self
.
model
.
train
()
if
self
.
ema
:
ori_model
,
self
.
model
=
self
.
model
,
ema_module
acc_ema
=
self
.
eval
(
epoch_id
)
self
.
model
=
ori_model
ema_module
.
eval
()
if
acc_ema
>
best_metric_ema
:
best_metric_ema
=
acc_ema
save_load
.
save_model
(
self
.
model
,
self
.
optimizer
,
{
"metric"
:
acc_ema
,
"epoch"
:
epoch_id
},
self
.
output_dir
,
ema
=
ema_module
,
model_name
=
self
.
config
[
"Arch"
][
"name"
],
prefix
=
"best_model_ema"
,
loss
=
self
.
train_loss_func
)
logger
.
info
(
"[Eval][Epoch {}][best metric ema: {}]"
.
format
(
epoch_id
,
best_metric_ema
))
logger
.
scaler
(
name
=
"eval_acc_ema"
,
value
=
acc_ema
,
step
=
epoch_id
,
writer
=
self
.
vdl_writer
)
# save model
if
epoch_id
%
save_interval
==
0
:
save_load
.
save_model
(
...
...
@@ -382,6 +425,7 @@ class Engine(object):
self
.
optimizer
,
{
"metric"
:
acc
,
"epoch"
:
epoch_id
},
self
.
output_dir
,
ema
=
ema_module
,
model_name
=
self
.
config
[
"Arch"
][
"name"
],
prefix
=
"epoch_{}"
.
format
(
epoch_id
),
loss
=
self
.
train_loss_func
)
...
...
@@ -391,6 +435,7 @@ class Engine(object):
self
.
optimizer
,
{
"metric"
:
acc
,
"epoch"
:
epoch_id
},
self
.
output_dir
,
ema
=
ema_module
,
model_name
=
self
.
config
[
"Arch"
][
"name"
],
prefix
=
"latest"
,
loss
=
self
.
train_loss_func
)
...
...
ppcls/engine/train/train.py
浏览文件 @
1bbe4b5e
...
...
@@ -53,25 +53,33 @@ def train_epoch(engine, epoch_id, print_batch_step):
out
=
forward
(
engine
,
batch
)
loss_dict
=
engine
.
train_loss_func
(
out
,
batch
[
1
])
# loss
loss
=
loss_dict
[
"loss"
]
/
engine
.
update_freq
# backward & step opt
if
engine
.
amp
:
scaled
=
engine
.
scaler
.
scale
(
loss
_dict
[
"loss"
]
)
scaled
=
engine
.
scaler
.
scale
(
loss
)
scaled
.
backward
()
for
i
in
range
(
len
(
engine
.
optimizer
)):
engine
.
scaler
.
minimize
(
engine
.
optimizer
[
i
],
scaled
)
if
(
iter_id
+
1
)
%
engine
.
update_freq
==
0
:
for
i
in
range
(
len
(
engine
.
optimizer
)):
engine
.
scaler
.
minimize
(
engine
.
optimizer
[
i
],
scaled
)
else
:
loss_dict
[
"loss"
].
backward
()
for
i
in
range
(
len
(
engine
.
optimizer
)):
engine
.
optimizer
[
i
].
step
()
loss
.
backward
()
if
(
iter_id
+
1
)
%
engine
.
update_freq
==
0
:
for
i
in
range
(
len
(
engine
.
optimizer
)):
engine
.
optimizer
[
i
].
step
()
# clear grad
for
i
in
range
(
len
(
engine
.
optimizer
)):
engine
.
optimizer
[
i
].
clear_grad
()
# step lr(by step)
for
i
in
range
(
len
(
engine
.
lr_sch
)):
if
not
getattr
(
engine
.
lr_sch
[
i
],
"by_epoch"
,
False
):
engine
.
lr_sch
[
i
].
step
()
if
(
iter_id
+
1
)
%
engine
.
update_freq
==
0
:
# clear grad
for
i
in
range
(
len
(
engine
.
optimizer
)):
engine
.
optimizer
[
i
].
clear_grad
()
# step lr(by step)
for
i
in
range
(
len
(
engine
.
lr_sch
)):
if
not
getattr
(
engine
.
lr_sch
[
i
],
"by_epoch"
,
False
):
engine
.
lr_sch
[
i
].
step
()
# update ema
if
engine
.
ema
:
engine
.
model_ema
.
update
(
engine
.
model
)
# below code just for logging
# update metric_for_logger
...
...
ppcls/engine/train/utils.py
浏览文件 @
1bbe4b5e
...
...
@@ -54,12 +54,12 @@ def log_info(trainer, batch_size, epoch_id, iter_id):
ips_msg
=
"ips: {:.5f} samples/s"
.
format
(
batch_size
/
trainer
.
time_info
[
"batch_cost"
].
avg
)
eta_sec
=
((
trainer
.
config
[
"Global"
][
"epochs"
]
-
epoch_id
+
1
)
*
len
(
trainer
.
train_dataloader
)
-
iter_id
)
*
trainer
.
max_iter
-
iter_id
)
*
trainer
.
time_info
[
"batch_cost"
].
avg
eta_msg
=
"eta: {:s}"
.
format
(
str
(
datetime
.
timedelta
(
seconds
=
int
(
eta_sec
))))
logger
.
info
(
"[Train][Epoch {}/{}][Iter: {}/{}]{}, {}, {}, {}, {}"
.
format
(
epoch_id
,
trainer
.
config
[
"Global"
][
"epochs"
],
iter_id
,
len
(
trainer
.
train_dataloader
)
,
lr_msg
,
metric_msg
,
time_msg
,
ips_msg
,
trainer
.
max_iter
,
lr_msg
,
metric_msg
,
time_msg
,
ips_msg
,
eta_msg
))
for
i
,
lr
in
enumerate
(
trainer
.
lr_sch
):
...
...
ppcls/utils/ema.py
浏览文件 @
1bbe4b5e
# Copyright (c) 202
0 PaddlePaddle Authors. All Rights Reserve
.
# Copyright (c) 202
1 PaddlePaddle Authors. All Rights Reserved
.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
...
...
@@ -12,52 +12,31 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
copy
import
deepcopy
import
paddle
import
numpy
as
np
class
ExponentialMovingAverage
():
"""
Exponential Moving Average
Code was heavily based on https://github.com/
Wanger-SJTU/SegToolbox.Pytorch/blob/master/lib/utils/
ema.py
Code was heavily based on https://github.com/
rwightman/pytorch-image-models/blob/master/timm/utils/model_
ema.py
"""
def
__init__
(
self
,
model
,
decay
,
thres_steps
=
True
):
self
.
_model
=
model
self
.
_decay
=
decay
self
.
_thres_steps
=
thres_steps
self
.
_shadow
=
{}
self
.
_backup
=
{}
def
register
(
self
):
self
.
_update_step
=
0
for
name
,
param
in
self
.
_model
.
named_parameters
():
if
param
.
stop_gradient
is
False
:
self
.
_shadow
[
name
]
=
param
.
numpy
().
copy
()
def
update
(
self
):
decay
=
min
(
self
.
_decay
,
(
1
+
self
.
_update_step
)
/
(
10
+
self
.
_update_step
))
if
self
.
_thres_steps
else
self
.
_decay
for
name
,
param
in
self
.
_model
.
named_parameters
():
if
param
.
stop_gradient
is
False
:
assert
name
in
self
.
_shadow
new_val
=
np
.
array
(
param
.
numpy
().
copy
())
old_val
=
np
.
array
(
self
.
_shadow
[
name
])
new_average
=
decay
*
old_val
+
(
1
-
decay
)
*
new_val
self
.
_shadow
[
name
]
=
new_average
self
.
_update_step
+=
1
return
decay
def
apply
(
self
):
for
name
,
param
in
self
.
_model
.
named_parameters
():
if
param
.
stop_gradient
is
False
:
assert
name
in
self
.
_shadow
self
.
_backup
[
name
]
=
np
.
array
(
param
.
numpy
().
copy
())
param
.
set_value
(
np
.
array
(
self
.
_shadow
[
name
]))
def
restore
(
self
):
for
name
,
param
in
self
.
_model
.
named_parameters
():
if
param
.
stop_gradient
is
False
:
assert
name
in
self
.
_backup
param
.
set_value
(
self
.
_backup
[
name
])
self
.
_backup
=
{}
def
__init__
(
self
,
model
,
decay
=
0.9999
):
super
().
__init__
()
# make a copy of the model for accumulating moving average of weights
self
.
module
=
deepcopy
(
model
)
self
.
module
.
eval
()
self
.
decay
=
decay
@
paddle
.
no_grad
()
def
_update
(
self
,
model
,
update_fn
):
for
ema_v
,
model_v
in
zip
(
self
.
module
.
state_dict
().
values
(),
model
.
state_dict
().
values
()):
ema_v
.
set_value
(
update_fn
(
ema_v
,
model_v
))
def
update
(
self
,
model
):
self
.
_update
(
model
,
update_fn
=
lambda
e
,
m
:
self
.
decay
*
e
+
(
1.
-
self
.
decay
)
*
m
)
def
set
(
self
,
model
):
self
.
_update
(
model
,
update_fn
=
lambda
e
,
m
:
m
)
ppcls/utils/save_load.py
浏览文件 @
1bbe4b5e
...
...
@@ -95,7 +95,11 @@ def load_distillation_model(model, pretrained_model):
pretrained_model
))
def
init_model
(
config
,
net
,
optimizer
=
None
,
loss
:
paddle
.
nn
.
Layer
=
None
):
def
init_model
(
config
,
net
,
optimizer
=
None
,
loss
:
paddle
.
nn
.
Layer
=
None
,
ema
=
None
):
"""
load model from checkpoint or pretrained_model
"""
...
...
@@ -115,6 +119,11 @@ def init_model(config, net, optimizer=None, loss: paddle.nn.Layer=None):
for
i
in
range
(
len
(
optimizer
)):
optimizer
[
i
].
set_state_dict
(
opti_dict
[
i
]
if
isinstance
(
opti_dict
,
list
)
else
opti_dict
)
if
ema
is
not
None
:
assert
os
.
path
.
exists
(
checkpoints
+
".ema.pdparams"
),
\
"Given dir {}.ema.pdparams not exist."
.
format
(
checkpoints
)
para_ema_dict
=
paddle
.
load
(
checkpoints
+
".ema.pdparams"
)
ema
.
set_state_dict
(
para_ema_dict
)
logger
.
info
(
"Finish load checkpoints from {}"
.
format
(
checkpoints
))
return
metric_dict
...
...
@@ -133,6 +142,7 @@ def save_model(net,
optimizer
,
metric_info
,
model_path
,
ema
=
None
,
model_name
=
""
,
prefix
=
'ppcls'
,
loss
:
paddle
.
nn
.
Layer
=
None
,
...
...
@@ -161,6 +171,8 @@ def save_model(net,
paddle
.
save
(
s_params
,
model_path
+
"_student.pdparams"
)
paddle
.
save
(
params_state_dict
,
model_path
+
".pdparams"
)
if
ema
is
not
None
:
paddle
.
save
(
ema
.
state_dict
(),
model_path
+
".ema.pdparams"
)
paddle
.
save
([
opt
.
state_dict
()
for
opt
in
optimizer
],
model_path
+
".pdopt"
)
paddle
.
save
(
metric_info
,
model_path
+
".pdstates"
)
logger
.
info
(
"Already save model in {}"
.
format
(
model_path
))
test_tipc/config/ConvNeXt/ConvNeXt_tiny_train_infer_python.txt
0 → 100644
浏览文件 @
1bbe4b5e
===========================train_params===========================
model_name:ConvNeXt_tiny
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/ConvNeXt/ConvNeXt_tiny.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/ConvNeXt/ConvNeXt_tiny.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/ConvNeXt/ConvNeXt_tiny.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
inference_dir:null
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml -o PreProcess.transform_ops.0.ResizeImage.resize_short=256 -o PreProcess.transform_ops.1.CropImage.size=224
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
\ No newline at end of file
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录