提交 1b0658e6 编写于 作者: weixin_46524038's avatar weixin_46524038 提交者: cuicheng01

modify latency

上级 94fe07d0
......@@ -64,7 +64,7 @@ DPN 的全称是 Dual Path Networks,即双通道网络。该网络是由 Dense
| Models | Crop Size | Resize Short Size | FP32<br/>Batch Size=1<br/>(ms) | FP32<br/>Batch Size=4<br/>(ms) | FP32<br/>Batch Size=8<br/>(ms) |
|-------------|-----------|-------------------|-------------------|-------------------|-------------------|
| DPN68 | 224 | 256 | 2.82 | 10.90 | 14.45 |
| DPN92 | 224 | 256 | 6.15 | 11.20 | 20.00 |
| DPN92 | 224 | 256 | 4.64 | 11.20 | 20.00 |
| DPN98 | 224 | 256 | 6.15 | 25.22 | 35.69 |
| DPN107 | 224 | 256 | 8.39 | 34.44 | 52.12 |
| DPN131 | 224 | 256 | 8.26 | 33.96 | 48.62 |
......
......@@ -55,7 +55,7 @@ DeiT(Data-efficient Image Transformers)系列模型是由 FaceBook 在 2020
| ------------------------------------ | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ |
| DeiT_tiny_<br>patch16_224 | 224 | 3.87 | 3.58 | 4.64 |
| DeiT_small_<br>patch16_224 | 224 | 3.52 | 5.90 | 9.44 |
| DeiT_base_<br>patch16_224 | 224 | 5.97 | 15.52 | 27.39 |
| DeiT_base_<br>patch16_224 | 224 | 5.97 | 15.52 | 27.37 |
| DeiT_base_<br>patch16_384 | 384 | 13.78 | 45.94 | 89.38 |
| DeiT_tiny_<br>distilled_patch16_224 | 224 | 3.31 | 3.61 | 4.57 |
| DeiT_small_<br>distilled_patch16_224 | 224 | 3.57 | 5.91 | 9.51 |
......
......@@ -70,9 +70,9 @@ GhostNet 是华为于 2020 年提出的一种全新的轻量化网络结构,
| Models | Crop Size | Resize Short Size | FP32<br/>Batch Size=1<br/>(ms) | FP32<br/>Batch Size=4<br/>(ms) | FP32<br/>Batch Size=8<br/>(ms) |
| -------------------------------- | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ |
| GhostNet_x0_5 | 224 | 256 | 1.66 | 2.24 | 2.73 |
| GhostNet_x1_0 | 224 | 256 | 1.69 | 2.73 | 3.81 |
| GhostNet_x1_3 | 224 | 256 | 1.84 | 2.88 | 3.94 |
| GhostNet_x0_5 | 224 | 256 | 1.10 | 1.42 | 1.47 |
| GhostNet_x1_0 | 224 | 256 | 1.07 | 1.71 | 2.25 |
| GhostNet_x1_3 | 224 | 256 | 1.28 | 2.04 | 2.66 |
| GhostNet_x1_3_ssld | 224 | 256 | 1.85 | 3.17 | 4.29 |
**备注:** 精度类型为 FP32,推理过程使用 TensorRT。
......
......@@ -55,7 +55,7 @@ MixNet 是谷歌出的一篇关于轻量级网络的文章,主要工作就在
| -------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ |
| MixNet_S | 224 | 1.83 | 2.59 | 3.86 |
| MixNet_M | 224 | 2.25 | 3.38 | 5.06 |
| MixNet_L | 224 | 1.83 | 4.19 | 6.29 |
| MixNet_L | 224 | 2.39 | 4.19 | 6.29 |
**备注:** 精度类型为 FP32,推理过程使用 TensorRT。
......
......@@ -56,7 +56,9 @@ RegNet 是由 facebook 于 2020 年提出,旨在深化设计空间理念的概
| Models | Size | Latency(ms)<br>bs=1 | Latency(ms)<br>bs=4 | Latency(ms)<br>bs=8 |
| ---------------------- | --------------- | ---------------- | ----------------------- | --------------------- |
| RegNetX_200MF | 224 | 1.00 | 1.29 | 4.12 |
| RegNetX_4GF | 224 | 6.46 | 8.48 | 11.45 |
| RegNetX_32GF | 224 | 13.66 | 28.08 | 51.04 |
**备注:** 精度类型为 FP32,推理过程使用 TensorRT。
......
......@@ -67,7 +67,7 @@ RepVGG(Making VGG-style ConvNets Great Again)系列模型是由清华大学(丁
| RepVGG_B1g4 | 224 | 4.73 | 7.23 | 11.14 |
| RepVGG_B2g4 | 224 | 5.47 | 8.94 | 14.73 |
| RepVGG_B3 | 224 | 4.28 | 11.64 | 21.14 |
| RepVGG_B3g4 | 224 | 4.21 | 8.22 | 14.69 |
| RepVGG_B3g4 | 224 | 4.21 | 8.22 | 14.68 |
| RepVGG_D2se | 224 | - | - | - |
**备注:** 精度类型为 FP32,推理过程使用 TensorRT。
......
......@@ -67,8 +67,8 @@ Res2Net 是 2019 年提出的一种全新的对 ResNet 的改进方案,该方
| Res2Net50_26w_4s | 224 | 3.31 | 5.65 | 8.33 |
| Res2Net50_vd_26w_4s | 224 | 3.35 | 5.79 | 8.63 |
| Res2Net50_14w_8s | 224 | 4.13 | 6.56 | 9.45 |
| Res2Net101_vd_26w_4s | 224 | 6.34 | 11.02 | 16.13 |
| Res2Net200_vd_26w_4s | 224 | 11.45 | 19.77 | 28.81 |
| Res2Net101_vd_26w_4s | 224 | 5.96 | 10.56 | 15.20 |
| Res2Net200_vd_26w_4s | 224 | 10.80 | 19.48 | 27.95 |
| Res2Net50_vd_26w_4s_ssld | 224 | 3.58 | 6.35 | 9.52 |
| Res2Net101_vd_26w_4s_ssld | 224 | 9.56 | 10.56 | 15.20 |
| Res2Net200_vd_26w_4s_ssld | 224 | 10.80 | 19.48 | 27.95 |
......
......@@ -68,18 +68,18 @@ ResNeXt 是 ResNet 的典型变种网络之一,ResNeXt 发表于 2017 年的 C
| Models | Size | Latency(ms)<br>bs=1 | Latency(ms)<br>bs=4 | Latency(ms)<br>bs=8 |
|-----------------------|-------------------|-----------------------|-----------------------|-----------------------|
| ResNeXt50_32x4d | 224 | 5.07 | 8.49 | 12.02 |
| ResNeXt50_vd_32x4d | 224 | 5.29 | 8.68 | 12.33 |
| ResNeXt50_64x4d | 224 | 9.39 | 13.97 | 20.56 |
| ResNeXt50_vd_64x4d | 224 | 9.75 | 14.14 | 20.84 |
| ResNeXt50_32x4d | 224 | 2.42 | 8.42 | 11.54 |
| ResNeXt50_vd_32x4d | 224 | 2.50 | 8.62 | 11.90 |
| ResNeXt50_64x4d | 224 | 3.62 | 10.24 | 20.93 |
| ResNeXt50_vd_64x4d | 224 | 3.68 | 10.30 | 21.20 |
| ResNeXt101_32x4d | 224 | 4.81 | 17.60 | 22.98 |
| ResNeXt101_vd_32x4d | 224 | 4.85 | 17.50 | 23.11 |
| ResNeXt101_64x4d | 224 | 10.88 | 20.17 | 41.79 |
| ResNeXt101_64x4d | 224 | 7.12 | 20.17 | 41.64 |
| ResNeXt101_vd_64x4d | 224 | 7.34 | 22.46 | 41.79 |
| ResNeXt152_32x4d | 224 | 7.09 | 27.16 | 34.32 |
| ResNeXt152_vd_32x4d | 224 | 4.85 | 26.83 | 34.48 |
| ResNeXt152_64x4d | 224 | 3.62 | 30.14 | 62.60 |
| ResNeXt152_vd_64x4d | 224 | 3.68 | 30.30 | 62.94 |
| ResNeXt152_vd_32x4d | 224 | 7.12 | 26.83 | 34.48 |
| ResNeXt152_64x4d | 224 | 10.88 | 30.14 | 62.60 |
| ResNeXt152_vd_64x4d | 224 | 10.58 | 30.30 | 62.94 |
**备注:** 精度类型为 FP32,推理过程使用 TensorRT。
......
......@@ -90,14 +90,14 @@ PaddleClas 提供的 ResNet 系列的模型包括 ResNet50,ResNet50_vd,ResNe
| ResNet34_vd_ssld | 224 | 2.00 | 3.26 | 5.85 |
| ResNet50 | 224 | 2.19 | 3.77 | 6.22 |
| ResNet50_vc | 224 | 2.57 | 4.83 | 7.52 |
| ResNet50_vd | 224 | 2.32 | 3.92 | 6.46 |
| ResNet101 | 224 | 4.00 | 6.84 | 11.24 |
| ResNet50_vd | 224 | 2.23 | 3.92 | 6.46 |
| ResNet101 | 224 | 4.00 | 6.68 | 11.24 |
| ResNet101_vd | 224 | 4.04 | 6.84 | 11.44 |
| ResNet152 | 224 | 5.71 | 9.58 | 16.16 |
| ResNet152_vd | 224 | 5.76 | 9.75 | 16.40 |
| ResNet200_vd | 224 | 7.32 | 12.45 | 21.09 |
| SE_ResNet18_vd | 224 | 1.31 | 1.77 | 2.92 |
| SE_ResNet34_vd | 224 | 2.20 | 2.99 | 2.92 |
| SE_ResNet34_vd | 224 | 2.20 | 2.99 | 5.09 |
| SE_ResNet50_vd | 224 | 2.72 | 5.07 | 8.12 |
| ResNet50_vd_ssld | 224 | 2.59 | 4.87 | 7.62 |
| ResNet101_vd_ssld | 224 | 4.43 | 8.25 | 12.58 |
......
......@@ -48,7 +48,7 @@ VAN(Visual Attention Network)系列模型是在 2022 年提出的 CNN 架构
| Models | Size | Latency(ms)<br>bs=1 | Latency(ms)<br>bs=4 | Latency(ms)<br>bs=8 |
|-------------|-----------|-------------------|-------------------|-------------------|-------------------|
| VAN-B0 | 224 | 9.58 | 10.21 | 10.78 |
| VAN-B1 | 224 | 8.24 | 8.74 | 9.85 |
| VAN-B1 | 224 | 8.24 | 8.74 | 9.85 |
| VAN-B2 | 224 | 17.09 | 18.48 | 19.32 |
| VAN-B3 | 224 | 32.09 | 33.91 | 36.13 |
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册