未验证 提交 18cdc42e 编写于 作者: D dyning 提交者: GitHub

Update README.md

上级 e3058253
......@@ -6,28 +6,24 @@ PaddleClas的目的是为工业界和学术界提供一个图像分类任务相
- 高阶使用:高精度的实用模型蒸馏方案(准确率82.39%的ResNet50_vd和78.9%的MobileNetV3)、8种数据增广方法的复现和验证
- 应用拓展:常见视觉任务的特色方案,包括图像分类领域的迁移学习(百度自研的10w类图像分类预训练模型)和通用目标检测(mAP 47.8%的实用检测方案)等
- 应用拓展:常见视觉任务的特色方案,包括图像分类领域的迁移学习(百度自研的10类图像分类预训练模型)和通用目标检测(mAP 47.8%的实用检测方案)等
- 实用工具:便于工业应用部署的实用工具,包括TensorRT预测、移动端预测、INT8量化、多机训练、PaddleHub
- 实用工具:便于工业应用部署的实用工具,包括TensorRT预测、移动端预测、模型服务化部署
- 赛事支持:助力多个视觉全球挑战赛取得领先成绩,包括2018年Kaggle Open Images V4图像目标检测挑战赛冠军、2019年Kaggle地标检索挑战赛亚军等
## 模型库
基于ImageNet1k分类数据集,PaddleClas提供ResNet、ResNet_vd、EfficientNet、Res2Net、HRNet、MobileNetV3等25种常用分类网络结构的简单介绍、论文指标复现配置,以及在复现过程中的训练技巧。与此同时,PaddleClas也提供了对应的117个图像分类预训练模型,并且基于TensorRT评估了所有模型的GPU预测时间,以及在骁龙855(SD855)上评估了移动端模型的CPU预测时间和存储大小。详情请见文档教程中的[**模型库章节**](https://paddleclas.readthedocs.io/zh_CN/latest/zh_cn/models/models_intro.html)
<div align="center">
<img src="docs/images/models/main_fps_top1.png" width="600">
</div>
基于ImageNet1k分类数据集,PaddleClas提供ResNet、ResNet_vd、EfficientNet、Res2Net、HRNet、MobileNetV3等25种常用分类网络结构的简单介绍,论文指标复现配置,以及在复现过程中的训练技巧。与此同时,PaddleClas也提供了117个图像分类预训练模型,并且基于TensorRT评估了所有模型的GPU预测时间,以及在骁龙855(SD855)上评估了移动端模型的CPU预测时间和存储大小。
上图展示了一些适合服务器端应用的模型,使用V100,FP16和TensorRT预测一个batch的时间,其中batch_size=32,图中ResNet50_vd_ssld,是采用PaddleClas提供的SSLD蒸馏方法训练的模型。图中相同颜色和符号的点代表同一系列不同规模的模型。不同模型的FLOPS和Parameters、FP16和FP32的预测时间以及不同batch_size的预测时间正在持续更新中。
上图展示了一些适合服务器端应用的模型,使用V100,FP16和TensorRT预测一个batch的时间,其中batch_size=32,图中ResNet50_vd_ssld,是采用PaddleClas提供的SSLD蒸馏方法训练的模型。图中相同颜色和符号的点代表同一系列不同规模的模型。不同模型的FLOPS和Parameters、FP16和FP32的预测时间以及不同batch_size的预测时间请参考文档教程中的[**模型库章节**](https://paddleclas.readthedocs.io/zh_CN/latest/zh_cn/models/models_intro.html)
<div align="center">
<img
src="docs/images/models/mobile_arm_top1.png" width="600">
</div>
上图展示了一些适合移动端应用的模型,在SD855上预测一张图像的CPU时间以及模型的存储大小。图中MV3_large_x1_0_ssld(M是MobileNet的简称),MV3_small_x1_0_ssld、MV2_ssld和MV1_ssld,是采用PaddleClas提供的SSLD蒸馏方法训练的模型。MV3_large_x1_0_ssld_int8是进一步进行INT8量化的模型。不同模型的FLOPS和Parameters、以及更多的GPU预测时间正在持续更新中。
上图展示了一些适合移动端应用的模型,在SD855上预测一张图像的CPU时间以及模型的存储大小。图中MV3_large_x1_0_ssld(M是MobileNet的简称),MV3_small_x1_0_ssld、MV2_ssld和MV1_ssld,是采用PaddleClas提供的SSLD蒸馏方法训练的模型。MV3_large_x1_0_ssld_int8是进一步进行INT8量化的模型。不同模型的FLOPS和Parameters、以及更多的GPU预测时间请参考文档教程中的[**模型库章节**](https://paddleclas.readthedocs.io/zh_CN/latest/zh_cn/models/models_intro.html)
- TODO
- [ ] EfficientLite、GhostNet、RegNet论文指标复现和性能评估
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册